Conveners
Novel Cherenkov imaging techniques for future experiments: I
- Franz Muheim (University of Edinburgh (GB))
- Takayuki SUMIYOSHI
Novel Cherenkov imaging techniques for future experiments: II
- Takayuki SUMIYOSHI
- Franz Muheim (University of Edinburgh (GB))
Novel Cherenkov imaging techniques for future experiments: III
- Antonello Di Mauro (CERN)
- Evgeniy Kravchenko (Budker Institute of Nuclear Physics)
The two RICH detectors in LHCb have successfully collected data corresponding to 3.3 /fb of integrated luminosity since 2010 and have been essential for most of the physics programme of LHCb. From 2021 onwards LHCb plans to collect data corresponding to 5 /fb of integrated luminosity per year in order to improve the statistical precision of the physics measurements and to search for very rare...
TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment to complement its particle identification capabilities provided by two gaseous ring-imaging Cherenkov detectors. TORCH is using 10mm-thick planes of quartz radiator in a modular design. A fraction of the...
CBM is a future heavy-ion experiment at the FAIR facility. It will explore the intermediate region of the QCD phase diagram with beam energies of up to 11 AGeV for the heaviest nucleus at SIS100. In CBM electrons with momenta of up to 8 GeV/c will be mainly identified with a RICH detector. It consists of a CO2 gaseous radiator, a spherical mirror system, and Multianode Photomultiplier Tubes...
A 2 cm thick fused silica plate is the central part of the Endcap Disc DIRC, that has been designed to identify traversing pions, kaons and protons in the future PANDA experiment. The detector has a dodecagonal structure with a diameter of about 2 m. The radiator is segmented into 4 identical quadrants. Its acceptance covers the PANDA forward range of 5° to 22°. Cherenkov light produced by...
The PANDA detector at the international accelerator Facility for Antiproton and Ion
Research in Europe (FAIR) in Darmstadt, Germany will address fundamental questions
of hadron physics. The PANDA Forward RICH (FRICH) is intended for identification of charged particles produced in antiproton collisions with a fixed hydrogen target that fly in the forward direction below 5°–10° of polar angle...
The Stony Brook University group has been involved with Cherenkov detector work for many years and our accomplishments include the RICH detector in PHENIX (photo-tube RICH) and the Hadron-Blind Detector (HBD), a windowless Cherenkov detector based upon CsI photocathodes directly placed upon the top surface a Gas Electron Multiplier (GEM). More recently, we have extended the work on CsI GEM...
We have previously built and tested a full scale prototype of a Focusing DIRC (FDIRC) detector [1]. This device was based on the BaBar radiators and bar box enclosures attached to a new cylindrically focused camera, and intended for the upgrade of the BaBar detector for the SUPERB factory. Similar optical concepts are now being considered for the GLUEX experiment at JLAB, and possibly, the...
The two RICH detectors of the LHCb experiment have been operational since 2008 and the data provided by them have been crucial for the physics program of LHCb. They have achieved an impressive performance for such complex detectors, one for all, its Cherenkov angle resolution of 0.67 mrad for single photons. The current system is expected to continue to take data until 2019, when a two year...