7-11 September 2015
Warsaw, Poland
Europe/Zurich timezone

Dynamically Induced Planck Scale and Inflation

8 Sep 2015, 14:00
Rm 111+112

Rm 111+112


Antonio Racioppi (NICPB, Estonia)


Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \approx 0.96$ for the spectral index and $r \approx 0.13$ for the tensor-to-scalar ratio, which can be reduced down to $\approx 0.04$ in presence of large couplings. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s \approx 0.96$ and $0.003 $<$ r $<$ 0.13$, interpolating between the quadratic and Starobinsky inflation. These theories relate the smallness of the weak scale to the smallness of inflationary perturbations: both arise naturally because of small couplings, implying a reheating temperature of $10^{7-9}$ GeV. A measurement of $r$ by Keck/Bicep3 would give us information on quantum gravity in the dimensionless scenario.

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now