Speaker
Description
A detailed model for the radar reflection of in-ice particle cascades is presented. This allows us to determine the effective area and sensitivity for a typical bi-static radar set-up. It follows that the radar technique is a promising method to probe the currently existing energy gap between several PeV where IceCube runs low in statistics and a few EeV where the Askaryan radio detectors become sensitive. However, the feasibility of the method crucially depends on the plasma properties such as its lifetime, free charge collision rate and density. These parameters are not well known, and therefore experimental verification is needed.
Summary
A detailed model for the radar reflection of in-ice particle cascades is presented. This allows us to determine the effective area and sensitivity for a typical bi-static radar set-up. It follows that the radar technique is a promising method to probe the currently existing energy gap between several PeV where IceCube runs low in statistics and a few EeV where the Askaryan radio detectors become sensitive. However, the feasibility of the method crucially depends on the plasma properties such as its lifetime, free charge collision rate and density. These parameters are not well known, and therefore experimental verification is needed.