Speaker
Description
The two-wave quark production scenario, proposed by Scott Pratt in 2012 as a signature of the production of quark-gluon plasma in high energy heavy ion collisions, can be studied with balance functions of identified particle pairs. We present measurements of such balance functions based on an analysis of data acquired at the Large Hadron Collider (LHC) by the ALICE detector. Balance functions have been measured for identified charged-pion pairs and for identified charged-kaon pairs in Pb-Pb collisions at √sNN = 2.76 TeV. These balance functions are presented in relative rapidity Δy and relative azimuthal angle Δϕ. We observe that the relative rapidity width of the charged-pion balance functions exhibits a strong dependence on the Pb-Pb collision centrality, while the balance functions for charged kaons show little centrality dependence. These findings are consistent with the effects of delayed hadronization and radial flow, as well as the two-wave scenario, but further analyses of the data, including a measurement of proton balance functions and detailed model comparisons are required to draw more significant conclusions.