Speaker
Description
The CCT (Canted Cosine Theta) Technology has been studied for its suitability for an FCC main dipole in terms of magnetic and mechanical performance, electro-thermal protectability, as well as efficiency. In this paper we present lessons learnt from our search for efficient CCT solutions by means of 2-D magnetic and mechanical simulations, discuss the 3-D periodic mechanical model, as well as 3-D electromagnetic analysis of the end regions. Temperature and voltage distributions during a quench under simplifying assumptions are discussed. Eventually, we present quench propagation in CCT-type high-field magnets, and how it may impact quench detection when compared to classic cosine-theta coils. Several new insights into efficient CCT design could be gleaned from these types of analyses and are summarized.
CCT being a much more recent technology in the field of high-field accelerator magnets, a program is under way at LBNL and PSI to catch up with other design options in terms of practical experience and development. In this presentation we will also line out the immediate plans for a 10-T model magnet at PSI, as well as steps towards manufacturing and instrumentation.