Speaker
Description
A high degree of beam stability is essential for the smooth operation of an active scanning system as applied by the Heidelberg Ion Beam Therapy Centre (HIT). Amongst other parameters such as particle intensity and beam width, the feedback controlled beam position at the isocentre is particularly crucial as it has to meet a very tight tolerance band of ±1.0 mm. Due to this fact we pay special attention to beam position fluctuations along the beamline by running daily procedures. The results are stored in CSV-files and visualised by python scripts using the matplotlib plotting library. Our investigation comprises the beam positions as a function of time in the accelerator sections MEBT (middle energy beam transport), synchrotron and HEBT (high energy beam transport). These sections are successively equipped with profile grids, position pick-ups or multi wire proportional chambers (MWPC). The aim is to find correlations between the beam position and external factors like e.g. temperature conditions of the surroundings or the cooling water. We also look for seasonal dependencies and interactions with the power load of the facility.