The propensity to adopt different shapes to minimize energy is a remarkable property of atomic nuclei. Nuclei around the $Z = 82$ shell closure exhibit a wide variety of these shapes. Low-lying excited states with different shape configurations to the ground state lead to shape-coexistence below the $N = 126$ shell closure. Additionally, octupole-deformed nuclei are found above the $N = 126$...
The work presented here pertains measuring the sign and magnitude of the spectroscopic quadrupole moment for the first excited 2+ state, Qs(2+), in 36Ar. This was done through a Coulomb excitation measurement using the reorientation effect at safe energies. The measurement was performed using a distance between nuclear surfaces of at least 6.5 fm as proposed by Spear in 1981 for light nuclei...
The VITO beamline (Versatile Ion-polarized Techniques Online) is the result of a recent initiative to combine several hyperfine interaction techniques requiring both spin-polarized and unpolarized nuclei for experiments relevant to material and life sciences, as well as nuclear physics and fundamental interactions studies. The first online experiment at VITO was performed at the end of 2014...
This poster will present the development of a new radio-frequency cooler buncher (RFCB) design for the collinear resonance ionisation spectroscopy (CRIS) experiment. A RFCB at CRIS would provide numerous benefits including the replication of online conditions during offline testing and would act as a beam energy reset; allowing CRIS to remain in a fixed setup. Due to spatial restrictions, a...
Electron emission channeling accurately measures the lattice location of radioactive impurities in single crystals by looking at the anisotropic emission of decay electrons (beta particles or conversion electrons) in the vicinity of major crystallographic directions. Lately, the search for the advantages that modern position-sensitive detectors (PSDs) can bring motivated several emission...
$^{208}$Pb is the heaviest stable doubly-magic nucleus and has been studied in great detail. Its first excited state occurs at 2.6 MeV and corresponds to an octupole vibration, resulting from the collective behaviour of a number of $E3$ ($\Delta l = \Delta j = 3$) particle excitations across the closed shell. This octupole transition has been observed in several other nuclei around...
The region of the chart of nuclei close to the doubly-magic nucleus 132Sn has been the object of
enormous interest in both experimental and theoretical investigations for the last several years. This
activity is well-motivated by the fact that nuclei with large neutron excess are an ideal playground
to verify the reliability of shell model predictions for nuclei far from stability. Crossing...
Gallium nitride (GaN) and related compounds represent a unique class of semiconductors with extraordinary properties related to their crystal structure, optical-, and electrical response.
Their exceptional properties have turned them into building-blocks for a wide range of state-of-the-art applications in optoelectronic and high-frequency devices including light emitting diodes, laser...
Highly porous nanograined materials have been developed throughout the last 10 years at ISOLDE-CERN, to deliver high and stable intensities of radioactive ion beams. The small grains provide short diffusion distances to the produced isotopes, while, after evaporation from the grain surface, the high porosity is beneficial for the isotope to escape the material envelope.
Embossed and rolled...
Laser spectroscopy enables a reliable determination of nuclear ground-state spins, moments and mean-square charge radii. Optical isotope shifts and hyperfine structures were measured for Ni ($\textit{Z}$ = 28) isotopes on the atomic transition $3d^94s^1$ $^3D_3 \rightarrow $ $3d^94p^1$ $^3P_2$ at 353.45nm. By using the COLLAPS setup at CERN-ISOLDE, measurements of $^{58-68,70}$Ni were made in...
Time Differential Perturbed Angular Correlation of γ-rays (TDPAC) experiments were performed in late 2014 for the first time using the decay cascade from 68mCu (6-, 721 keV, 3.75 min) at the VITO beam line at ISOLDE-CERN. Due to the relatively short half-life the TDPAC measurements were performed online at an improvised provisional experimental setup, where selected samples were chosen such...
Highly selective and efficient laser ion sources are of fundamental importance to study atomic and nuclear properties along the nuclear chart. Upgrading the well-established, highly element-selective laser resonance ionization technique with additional suppression of isobaric contaminations immediately at the exit of the hot ion source cavity led to the development of the Laser Ion Source and...
Nuclear reactions involving the production and destruction of 7Be is very much relevant in search for a solution to the cosmological lithium problem. In the experiment IS 554, we plan to measure with better accuracy the destruction of 7Be through resonance excitation of 7Be (d,p) 8Be*. This is required before one can invoke solutions beyond nuclear physics, particularly the newly conjectured...