Conveners
Nuclear Structure 2
- Klaus Wendt (Johannes-Gutenberg-Universitaet Mainz (DE))
We discuss a current status of the shell-model calculations with charge-dependent Hamiltonians. In an empirical approach, such a Hamiltonian includes a two-body Coulomb interaction and effective charge-dependent forces of nuclear origin, resulting in five or six additional parameters for an sd or pf shell, respectively.The accuracy of the method is demonstrated on the description of...
A summary of the 2016 experimental campaign at the ISOLDE Decay Station will be presented alongside the preliminary results. The presentation will also include highlights of the already published results concerning the fast-timing study of 129Sn, the beta-delayed proton emission measurement of 20Mg and the 31Ar multi-particle decay experiment.
Exotic neutron-rich nuclei around N=40 exhibit rapid structural changes with proton and neutron number. While 68Ni40 shows signatures of a doubly magic nucleus, excitation energies and transition strengths suggest a rapid development of collectivity in the ground state of neutron-rich 26Fe and 24Cr isotopes towards N=40. Accurate masses in this...
The Collinear Resonance Ionization Spectroscopy experiment (CRIS) at ISOLDE combines the high sensitivity of resonance ionization spectroscopy with the high resolution offered by collinear laser spectroscopy. The first experiments at CRIS demonstrated the ability to reach exotic isotopes, normally out of reach for collinear laser spectroscopy methods based on photon detection, with an...
Bunched-beam collinear laser spectroscopy was added to the extensive list of techniques used to study the Bi isotopic chain at ISOLDE. The atomic hyperfine splitting in the transition previously employed for in-source laser spectroscopy was not fully resolved in the in-source measurements. As Bi is a well-known example of the Bohr-Weisskopf effect or “Hyperfine anomaly”, it became apparent...
In the beta decay of exotic nuclei, far from stability, the daughter nuclei might be formed in an excited state, which is unstable against particle emission. This phenomenon is called β-delayed particle emission and is due to a high Q-value and low separation energy for particle emission. The decay of the proton drip-line nucleus $^{31}$Ar is one of the most exotic β-delayed multi-particle...