8–19 Jan 2018
Ecole de Physique des Houches
Europe/Zurich timezone

The phase-imaging ion-cyclotron-resonance detection technique used at ISOLTRAP/CERN

Not scheduled
20m
Ecole de Physique des Houches

Ecole de Physique des Houches

https://houches.univ-grenoble-alpes.fr/
Poster Session 1 Poster session 1

Speaker

Mr Jonas Karthein (Ruprecht Karls Universitaet Heidelberg (DE))

Description

The Penning-trap mass spectrometer ISOLTRAP located at the radioactive ion beam facility ISOLDE at CERN performs high-precision mass measurements of short-lived nuclides. This gives access to the study of nuclear structure effects like the location of shell and subshell closures and provides precision $\beta$-decay $Q$-values to test nuclear models and fundamental interactions. For three decades the measurement principle has been based on the time-of-flight ion-cyclotron-resonance (ToF-ICR) detection technique, which is currently reaching its limits for accessible half-lives and relative uncertainties. With the new phase-imaging ion-cyclotron-resonance (PI-ICR) detection technique [S. Eliseev et al., Phys. Rev. Lett. 110 082501 (2013)], experiments can be performed with fewer ions and higher resolving power, providing access to new areas of the nuclear chart. This poster will report on the ion-optical and data-acquisition improvements required for the implementation of the PI-ICR detection technique at ISOLTRAP, as well as results from first on-line measurements in both the high-precision and high-resolution regimes. During a systematic on-line study the $Q$-value of the $^{88}$Sr-$^{88}$Rb $\beta$-decay was determined with an uncertainty of $< 130\,$eV as a validation of the successful implementation of the PI-ICR detection technique with ISOLTRAP. Furthermore, the new detection technique allowed spatial separation of the close-lying isomeric states in $^{127}$Cd and $^{129}$Cd from which their excitation energy was derived. A mass resolving power $\frac{m}{\Delta m} > 10^6$ was reached for only 100$\,$ms phase-accumulation time.

Primary authors

Mr Jonas Karthein (Ruprecht Karls Universitaet Heidelberg (DE)) Pauline Ascher (CENBG) Dinko Atanasov (Technische Universitaet Dresden (DE)) Klaus Blaum (MPIK) Prof. Thomas Elias Cocolios (KU Leuven - IKS) Sergey Eliseev (Max-Planck-Institute for Nuclear Physics (DE)) Dr Frank HERFURTH (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE)) Alexander Herlert (Facility for Antiproton and Ion Research (DE)) Mr Wenjia Huang (CSNSM IN2P4-CNRS) Dr Magdalena Kowalska (CERN) Yuri Litvinov (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE)) David Lunney (CSNSM Centre de Spectrometrie Nucle aire et de Spectrometrie de) Vladimir Manea (Max-Planck-Institute for Nuclear Physics (DE)) Maxime Mougeot (Université Paris-Saclay (FR)) Dennis Neidherr (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE)) Marco Rosenbusch (Ernst-Moritz-Arndt-Universitaet (DE)) Lutz Christian Schweikhard (Ernst Moritz Arndt Universitaet (DE)) Andree Welker (Technische Universitaet Dresden (DE)) Frank Wienholtz (Ernst-Moritz-Arndt-Universitaet (DE)) Dr Robert Wolf (Max-Planck-Institut für Kernphysik) Kai Zuber (Technische Universitaet Dresden)

Presentation materials

There are no materials yet.