TH String Theory Seminar

Fabian Ruehle, "Machine learning in the string landscape"

Europe/Zurich
4-3-006 - TH Conference Room (CERN)

4-3-006 - TH Conference Room

CERN

100
Show room on map
Description

We examine the possibility of using neural networks and machine learning to investigate the string landscape. Since the topic is rather new, we will start with an introduction to machine learning and review possible applications for the landscape. Given the versatile nature and convoluted structure of the landscape, we propose to dynamically evolve the neural networks that feature in the analysis via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. In the end, we will look at concrete examples that illustrate how neural networks can be used to study stability and the chiral spectrum of vector bundles in heterotic theories.

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×