Conveners
5.5 Direct Detection
- Richard Gaitskell (Brown University)
CRESST searches directly for dark matter (DM) with $\mathrm{CaWO_4}$ crystals operated as cryogenic calorimeters. It established leading limits for the spin-independent DM-nucleon scattering cross-section down to DM-particle masses of $350\,\mathrm{MeV/c^2}$. At this mass regime, the rejection power against electromagnetic background starts to degrade.
The background in the region of interest...
A promising path to detect dark matter is given by direct detection, i.e., detecting the recoil of dark matter particles in a target material by measurement of the energy deposited, as light, charge or heat. For the case of light dark matter (below 1 GeV) this approach is strongly connected to the highly non-trivial task of identifying appropriate materials having the necessary target...
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC in the Davis cavern at the Sanford Underground Research Facility, Lead, South Dakota, 4850 feet below the surface. The underground environment reduces the cosmic ray flux by a factor of $10^6$, but there remains a potential background from $\gamma$-rays emitted from the decays of $^{40}$K,...
COSINE-100 is a NaI(Tl) dark matter direct detection experiment, with the goal
of testing DAMA’s claim of dark matter detection by looking for an annual modulation signal. It consists of eight NaI(Tl) crystals, adding to a total of 106 kg, and 2000 liters of a liquid scintillator veto. Located at the Yangyang Underground Laboratory, South Korea, COSINE-100 has been running since September...