Oct 21 – 26, 2018
Asia/Kolkata timezone

Diamond Detector Development and Plans - The Status of the RD42 Collaboration

Not scheduled
15m

Speaker

Harris Kagan (Ohio State University (US))

Description

At present most experiments at the CERN Large Hadron Collider (LHC)
are planning upgrades in the next 5-10 years for their innermost
tracking layers as well as luminosity monitors to be able to take data
as the luminosity increases and CERN moves toward the High Luminosity-LHC
(HL-LHC). These upgrades will most likely require more radiation
tolerant technologies than exist today. As a result this is one area of
intense research. Chemical Vapor Deposition (CVD) diamond has been
used extensively and successfully in beam conditions/beam loss monitors
as the innermost detectors in the highest radiation areas of essentially
all LHC experiments. The startup of the LHC in 2015 brought a new
milestone where the first diamond pixel modules were installed in an LHC
experiment (ATLAS) and successfully began taking data. As a result,
this material is now being discussed as a possible sensor material
for tracking very close to the interaction region and for pixelated
beam conditions/beam loss monitors of the LHC/HL-LHC upgrades where
the most extreme radiation conditions will exist.

The RD42 collaboration at CERN is leading the effort to use CVD diamond
as a material for tracking detectors operating in extreme radiation
environments. During the last three years the RD42 group has succeeded
in producing and measuring a number of devices to address specfic issues
related to use at the HL-LHC. We will present status of the RD42 project with
emphasis on recent beam test results. In particular we present the latest
results on material development, the most recent results on radiation tolerance
and the independence of signal size on incident particle rate in
poly-crystalline CVD diamond pad and pixel detectors over a range of
particle fluxes up to 20 MHz/cm^2, measurements of charge collection in 3D
diamond devices and the most recent beam test results from small cell 3D
diamond pixel detectors. In addition we will present the plans for future
use of the most recent devices.

Primary author

Harris Kagan (Ohio State University (US))

Presentation materials

There are no materials yet.