Conveners
Wednesday Morning A
- Alexander Penin (University of Alberta)
Wednesday Morning A
- Alexander Penin (University of Alberta)
It is known that one-loop Feynman integrals possess an algebraic structure encoding their analytic properties called the coaction, which can be written in terms of Feynman integrals and their cuts. This diagrammatic coaction, and the coaction on other classes of integrals such as hypergeometric functions, may be expressed using suitable bases of differential forms and integration contours....
When finding linear relations between Feynman integrals using integration-by-parts identities, a very large linear system has to be solved as an intermediate step.
This makes other approaches to the derivation of these identities a worthwhile pursuit. In this context, the concept of the intersection number is of interest, as it allows for the definition of (what amounts to) a scalar product...
We compute the third-post-Minkowskian conservative Hamiltonian of binary black holes using modern tools from scattering amplitudes and effective field theory. In the limit of large separation, non-spinning black holes have an effective description in terms scalar field particles coupled to gravity. The two-loop integrand is constructed using generalized unitarity and the double copy...
Higher-order corrections to the interaction potential between non-relativistic massive objects can be obtained systematically in a Post-Newtonian expansion in the small velocity and weak coupling. We present the calculation of these corrections up to five loops using techniques from multi-loop computations in high-energy physics.
Elastic neutrino-electron scattering provides an important tool for normalizing neutrino flux in modern experiments. This process is subject to large radiative corrections. We determine the Fermi effective theory performing the one-loop matching to the Standard model at the electroweak scale with subsequent running down to GeV scale. Based on this theory, we analytically evaluate virtual...