Conveners
Parallel stream 1: Session 1
- Jonathon Mark Langford (Imperial College (GB))
Parallel stream 1: Session 2
- Antonin Vacheret (Imperial College London)
- Edward Thomas Atkin (Imperial College (GB))
- Antonin Vacheret (Imperial College London)
Parallel stream 1: Session 3
- Sinead Farrington (University of Warwick (GB))
Since the discovery of the Higgs boson with a mass near 125 GeV, much effort has been dedicated to studying its properties. This talk presents one such study, which investigates the CP structure of the Higgs boson by exploiting the gluon fusion production process in association with two jets. Analysis of the azimuthal angle correlations of the jets provides an insight into the CP nature of the...
The coupling strength of the higgs boson to fermions is predicted to be proportional to the fermions mass, making the higgs top coupling the strongest in the SM.
This coupling strength can be directly measured in the production of a higgs boson in combination with two top quarks, which was observed in 2018. In the SM, the higgs top coupling is predicted to be a CP-even coupling but measuring a...
The discovery of the Higgs boson in 2012 by the ALTAS and CMS experiments at CERN was only the beginning, the properties of this particle still need to be measured and compared with theoretical predictions. The ttH production channel allows a direct measurement of the Higgs coupling to top quarks, the heaviest particle in the Standard Model, while the H→γγ decay channel gives a narrow peak in...
The compact linear collider - or CLIC - is a proposed electron-positron collider and is currently the only mature option for a multi-TeV linear collider. The CLIC accelerator is based on a novel two-beam acceleration technique at an acceleration gradient of 100 MV/m. It would be built in stages, with three centre-of-mass energies of 380 GeV, 1.5 GeV and 3 TeV. CLIC will make precise...
SBND, a 112 ton liquid argon time projection chamber, is the near detector of the short-baseline neutrino program at Fermilab. Once data taking begins in 2020, it will provide flux constraints for sterile neutrino searches and produce world leading neutrino-argon cross-sections with seven million neutrino events in 3 years. This talk will demonstrate the capability of SBND's time projection...
The Short Baseline Neutrino (SBN) programme at Fermilab consists of three Liquid Argon Time Projection Chambers (LArTPCs) on the Booster Neutrino Beam. The key goal of the SBN programme is to perform the most sensitive search to date for sterile neutrinos in the eV-mass scale through appearance and disappearance oscillation channels. In order to achieve the sensitivities capable to the SBN...
Currently there is a lot of activity in R&D for future colliders. Multiple detector prototypes are being tested, each with different requirements for data acquisition and monitoring, which has generated different ad hoc software solutions. We present DQM4hep, a generic C++11 framework for online monitoring for particle physics experiments, and results obtained at several testbeams with...
As the LHC gathers ever more data and makes measurements with increasingly high precision, it is essential for theorists to match this precision when making predictions for cross-sections. In QCD and other gauge theories, this high precision is achieved by including multi-loop Feynman diagrams when calculating scattering amplitudes. Integration-by-parts identities (IBPs) are widely used when...
Dark matter experiments searching for weakly interacting massive particles (WIMPs) probe a variety of rare processes leading to O(keV) energy transfers to ordinary matter. Two-phase xenon detectors record two different signals per interaction: a prompt scintillation response (S1) and a delayed signal from ionisation (S2), with the energy threshold of standard analyses (S1+S2) largely...
The Large Underground Xenon (LUX) experiment is a retired dual phase Liquid Xenon Time Projection Chamber (LXe TPC), designed for the direct detection of dark matter. In 2016, LUX published its final limit on the spin independent nuclear cross-section for the scattering of WIMPs with nucleons. Subsequently the collaboration’s focus has shifted to exploring new physics beyond this energy range....
The decay of B mesons into a pair of oppositely charged muons is extremely rare in the Standard Model, due to the suppression of Flavour-Changing-Neutral-Current (FCNC). Their Standard Model prediction is accurate and the experimental signature is very clean, therefore these decays are considered one of the golden channels to test the Standard Model and to look for deviations from its...
The ATLAS experiment has never before measured the ratio of e+mu- to e-mu+ events in its data. Such a ratio is not expected to exceed one in the Standard Model in the LHC’s proton-proton collisions. However, it could exceed one for some Beyond the Standard Model (BSM) scenarios like R-Parity violating supersymmetry or scalar leptoquarks. This talk presents a general search for new physics...
When a muon passes through a matter it can liberate neutrons and produce radioactively unstable isotopes. These neutrons and cosmogenic radioisotopes form a background to deep underground low-background experiments.
With a 2 km overburden, SNO+ sees approximately 3 muons per hour passing through the detector. The water phase of the experiment has just completed, and the detector is currently...
The CP-violating angle γ is the only angle of the unitarity triangle which can be measured via tree-level processes. γ can also be measured indirectly using loop-level processes, which are susceptible to the effects of new physics. An observed discrepancy between the direct and indirect measurements of γ would be evidence for new physics. Reducing the experimental uncertainty on the direct γ...
The LHCb experiment focuses on CP violation, a process that explains the abundance of matter in the Universe. The Standard Model theory prediction of CP violation is much smaller than the observed asymmetry. The 'golden decay mode' B0s→J/ψφ could easily be influenced by New Physics particles, and shift the experimentally observed amount of CP violation from the theory prediction. I will...
ARIADNE is a 1-ton two-phase liquid argon (LAr) time projection chamber (TPC) featuring a novel optical readout method. The detector uses a Thick Gas Electron Multiplier (THGEM) in the extraction region to generate secondary scintillation light which is imaged using 4 Electron-Multiplying (EM)CCD cameras to produce high resolution images of particle interactions within the detector.
This...
NEWS-G is an innovative experiment aiming to shine a light on the dark matter conundrum with a novel gaseous detector, the spherical proportional counter. It uses light gases, such as hydrogen, helium, and neon, as targets, to expand dark matter searches to the sub-GeV/c2 mass region. NEWS-G produced its first results with a detector -60 cm in diameter- installed at LSM (France), excluding...
A search is conducted for single-production of a vector-like B quark decaying into a Higgs boson and a b quark. Vector-like quarks are theorised to be highly massive colour triplet spin-1/2 fermions arising in models, such as the Little Higgs and Composite Higgs models, which tackle the hierarchy problem resulting from the measured value of the Standard Model Higgs boson mass. Vector-like...
H ->bb decays allow to probe the Yukawa coupling of the Higgs boson to down type quarks. Observing these processes at the LHC is extremely challenging due to the large multi-jet background; however, this can be greatly suppressed by triggering on Missing Energy Transfer and leptons coming from the decay of a weak vector boson produced together with the Higgs.
In this talk, the latest search...