Speaker
Description
Recent weak lensing surveys have revealed that the direct measurement of the parameter combination S8 = σ8 (Ωm/0.3)^0.5-- measuring the amplitude of matter fluctuations on 8 Mpc/h scales -- is ∼3σ discrepant with the value reconstructed from cosmic microwave background (CMB) data assuming the ΛCDM model. In this talk, I discuss that it is possible to resolve the tension if dark matter (DM) decays with a lifetime of Gamma^{-1} ∼ 55 Gyrs into one massless and one massive product, and transfers a fraction ε ∼ 0.7 % of its rest mass energy to the massless component. The velocity-kick received by the massive daughter leads to a suppression of gravitational clustering below its free-streaming length, thereby reducing the σ8 value as compared to that inferred from the standard ΛCDM model, in a similar fashion to massive neutrino and standard warm DM. Contrarily to the latter scenarios, the time-dependence of the power suppression and the free-streaming scale allows the 2-body decaying DM scenario to accommodate CMB, baryon acoustic oscillation, growth factor and uncalibrated supernova Ia data.