Description
The Scintillating Bubble Chamber (SBC) experiment is a new low-background technique aimed at detecting low-mass (0.7-7 GeV/c$^{2}$) WIMP interactions and reactor CEvNS. The detector consists of a quartz-jar filled with liquid Argon (LAr), spiked with 100 ppm of liquid Xenon (LXe) acting as a wavelength-shifter, and instrumented with Cameras, Silicon-Photo-Multipliers and Piezo-acoustic sensors. The target fluid is de-pressurized into a super-heated state by a mechanically controlled piston. Particles interacting with the target can generate heat (bubbles) and scintillation light, depending on the energy intensity and density.
With an estimated threshold for nuclear recoils of 100 eV, the SBC projected WIMP-sensitivity is 3.0x10$^{-43}$ cm$^{2}$, at 0.7 GeV/c$^{2}$. In this talk, I will present the overall design and update on the ongoing construction/commissioning at Fermilab. Finally, I will discuss the collaboration’s plans for the SNOLAB installation and the reactor CEvNS search.