5–9 Nov 2021
60th Anniversary Hall , Inha Univ. Incheon, South Korea
Asia/Seoul timezone

Gradient tomography in heavy-ion collisions

7 Nov 2021, 14:55
17m
Room 107 (60th Anniversary Hall , Inha Univ. Incheon, South Korea)

Room 107

60th Anniversary Hall , Inha Univ. Incheon, South Korea

INHA UNIVERSITY, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

Speaker

Dr Yayun He (South China Normal University)

Description

Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $\hat q$ in dense QCD medium. Spatial gradient of $\hat q$ perpendicular to the propagation direction can lead to a drift and asymmetry in parton transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradient and path length of a propagating parton as shown by numerical solutions of the Boltzmann transport in the simplified form of a drift-diffusion equation. In high-energy heavy-ion collisions, this asymmetry with respect to a plane defined by the beam and trigger particle (photon, hadron or jet) with a given orientation relative to the event plane is shown to be closely related to the transverse position of the initial jet production in full event-by-event simulations within the linear Boltzmann transport model. Such a gradient tomography can be used to localize the initial jet production position for more detailed study of jet quenching and properties of the quark-gluon plasma along a given propagation path in heavy-ion collisions

Primary authors

LongGang Pang (Lawrence Berkeley National Laboratory) Dr Yayun He (South China Normal University) Xin-Nian Wang (Lawrence Berkeley National Lab. (US))

Presentation materials