Description
chair: Michał Artymowski, Aneta Wojnar
I will discuss local field theories with global degrees of freedom. The oldest of them is the so-called unimodular gravity introduced by Einstein a century ago. In this theory the cosmological constant is not a constant of nature, but merely a constant of integration. This provides an ideal landscape or ensemble of theories giving a different view on the origin of naturalness issues in modern physics.
The NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The possible NANOGrav signal would correspond to a string tension Gμ∈(4×10^{−11},10^{−10}) at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers. The SGWB produced by cosmic...
We study non-minimal Coleman-Weinberg inflation in the Palatini formulation of gravity in the presence of an $R^2$ term. The Planck scale is dynamically generated by the vacuum expectation value of the inflaton via its non-minimal coupling to the curvature scalar $R$. We show that the addition of the $R^2$ term in Palatini gravity makes non-minimal Coleman-Weinberg inflation again compatible...
The conservation law for the total (orbital and spin) angular momentum of a Dirac particle in the presence of gravity requires that spacetime is not only curved, but also has a nonzero torsion. The coupling between the spin and torsion in the Einstein-Cartan theory of gravity generates gravitational repulsion at extremely high densities. We consider gravitational collapse of a spin-fluid...
I would like to present application of the recently proposed curved spacetime Effective Field Theory (cEFT) to a problem of vacuum stability. To model the matter sector we used two scalar fields coupled through the Higgs portal type of interaction. Additionally, both of these fields were coupled non-minimally to gravity. This may be considered as a simplified model describing an interaction...
Production of Z bosons in emission processes by neutrinos in the expanding de Sitter universe is studied. We use perturbative methods to investigate emission processes that are forbidden in flat spacetime electroweak theory by the energy and momentum conservation. The amplitude and probability for the spontaneous emission of a Z boson by a neutrino or an antineutrino are computed analytically,...
We construct models with the Gauss-Bonnet term multiplied to a function of the scalar field leading to inflationary scenario. The consideration is related with the slow-roll approximation. The cosmological attractor approach gives the spectral index of scalar perturbations which is in a good agreement with modern observation and allows variability for tensor-to-scalar ratio. We reconstruct...