Speaker
Description
In this talk, we discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition.