Since jets are highly non trivial objects it is a delicate problem to meaningfully assign a flavor label to them. We show that modern jet substructure techniques can give us new ways to tackle this problem.
We propose two different approaches. On the one hand, we introduce a novel fragmentation-function framework that allows one to connect a flavor definition in the deep UV, where partons...
We present a measurement of the jet mass distribution in fully hadronic decays of boosted top quarks with full Run 2 data. The measurement is performed in the lepton+jets channel of top quark pair production. The top quark decay products of the all-hadronic decay cascade are reconstructed with a single large-radius jet with transverse momentum greater than 400 GeV. The top quark mass is...
We present a state-of-the art computation for forward dijets in proton-proton and proton-lead collisions at the LHC, using the kinematics of FCal ATLAS calorimeter and the planned FoCal extension of ALICE. We use the small-$x$ improved TMD (ITMD) formalism, together with collinearly improved TMD gluon distributions, full $b$-space Sudakov resummation
and discuss nonperturbative corrections...
This talk will describe BSM searches with jet substructure in Atlas, CMS, and LHCb experiments. It will be focus on the newest results from full-RunII analysis exploiting the state of the art tecquinques that allow to identify the internal structure of jets stamming from decay cascades of heavy particles like Vector bosons, Higgs bosons, Top quarks that exhibit a large Lorentz boost in the...