28 November 2022 to 2 December 2022
Europe/Zurich timezone

Elliptic flow of identified particles in Au+Au collisions at √sNN = 14.6 GeV in BESII

30 Nov 2022, 16:40
20m

Speaker

Shuai Zhou (CCNU)

Description

The main purpose of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), is to create new form of matter call Quark Gluon Plasma (QGP) in the laboratory and study quantum chromodynamics (QCD) phase structure. The initial anisotropy in the coordinate space is translated into the anisotropy in the momentum space. The elliptic flow ($v_2$) is defined as the second harmonic coefficient of the Fourier decomposition of azimuthal distribution of produced particles with respect to the reaction plane angle. It is sensitive to the early dynamic evolution of the system and can provide the possible signal of QGP and phase transition.
In this talk, we will present $v_2$ of $\pi^\pm$, $K^\pm$, $p$, $\bar p$, $K_S^0$, $\Lambda$, $\bar{\Lambda}$, $\Xi$, and $\bar{\Xi}^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.6 GeV in BESII. The $v_2$ results of pions, kaons, and protons will be compared with those of multi-strange hadrons. The number of constituent quark (NCQ) scaling will be tested as a function of collision centrality. Collision energy dependence of the NCQ scaling will be investigated by comparing $v_2$ results between 19.6 and 3 GeV. We will also compare our results with transport model calculations. Implications of these measurements in the context of QCD phase structure at high baryon chemical potential region will be discussed.

Presentation materials