Speaker
Description
SNO+ is a large multi-purpose liquid scintillator based experiment, with the main physics goal of searching for the neutrinoless double-beta decay of $^{130}$Te. Additional physics topics include the measurement of solar neutrinos, antineutrinos from reactors and the Earth, supernova neutrinos and the search for other rare events.
Since April 2022, the experiment is taking data with liquid scintillator and a 2.2 g/L PPO concentration, allowing the study of all radioactive backgrounds prior to the tellurium loading. In a first phase, 3900 kg of natural tellurium (0.5% loading) will be added to the scintillator for a predicted sensitivity of about 2$\times 10^{26}$ years (90% C.L.) with 3 years of livetime. Higher tellurium loading will follow for predicted sensitivities above $10^{27}$ years (3% loading).
In this talk I will focus on the current status of the experiment, its major radioactive backgrounds, and the prospects for the neutrinoless double-beta decay search.
Submitted on behalf of a Collaboration? | Yes |
---|