Conveners
Particle Astrophysics
- Pasquale Serpico
Particle Astrophysics
- Pasquale Serpico
Stellar observables have often been shown to be powerful probes in searches for Feebly interacting particles (FIPs), such as axions, scalars, dark photons, and majorons. In this talk, I will summarize some of the most recent developments, with a focus on supernovae and astrophysical transients.
In this work, we explore the consequences of neutrino decay facilitated by a neutral scalar on possible cosmic neutrino background (CνB) detection in the future, especially in the PTOLEMY experiment. We analyze the distortion of the expected event spectrum as a function of the singlet mass and Yukawa couplings, and we consider both a three-neutrino scenario and a scenario with an extra sterile...
Lorentz invariance is a pillar symmetry of the Standard Model. Yet, it may be violated in proposed extensions, inducing preference for particular directions in the propagation of particles. This type of Lorentz-invariance violation (LIV) is difficult to test. Fortunately, high-energy astrophysical neutrinos, with TeV–PeV energies and cosmological-scale baselines, provide us with a unique...
The aim of this presentation is to introduce a dark extension of the SM that communicates to it through three portals: neutrino, vector and scalar mixing, by which it could be possible to explain the Low Energy Excess (LEE) at MiniBooNE. In the model, Heavy Neutral leptons are produced by upscattering via a dark photon, with masses around 10 MeV – 2 GeV, and subsequently decay into an...
TeV blazars dominate the extragalactic gamma-ray sky and highly energetic pair beams arising from such blazar jets underproduce gamma rays in the GeV band while inverse-Compton scattering off the cosmic microwave background. Recent Fermi-LAT isotropic gamma-ray background measurements suggest that space plasma instabilities can play a crucial role in alleviating this GeV-TeV tension by...
Recently, the ANITA collaboration announced the detection of new, unsettling Ultra-High-Energy (UHE) events. Understanding their origin is pressing to ensure success of the incoming UHE neutrino program.
In this talk, I will discuss the ANITA-IV events in contrast with the lack of observations in the IceCube Neutrino Observatory. I will introduce a general framework to study the...
The creation of anti-nuclei in the Galaxy has been has been discussed as a possible signal of exotic production mechanisms such as primordial black hole evaporation or dark matter decay/annihilation in addition to the more conventional production from cosmic-ray (CR) interactions. Tentative observations of cosmic-ray antihelium by the AMS-02 collaboration have re-energized the quest to use...