Speaker
Description
Although Cherenkov detectors of high-energy neutrinos in ice and water are often optimized to detect TeV-PeV neutrinos, they may also be sensitive to transient neutrino sources in the 1-100~GeV energy range. A wide variety of transient sources have been predicted to emit GeV neutrinos. In light of the upcoming IceCube-Upgrade, which will extend the IceCube detector's sensitivity down to a few GeV, as well as improve its angular resolution, we survey a variety of transient source models and compare their predicted neutrino fluences to detector sensitivities, in particular those of IceCube-DeepCore and the IceCube Upgrade. We consider the ranges of neutrino fluence from transients powered by non-relativistic shocks, such as novae, supernovae, fast blue optical transients, and tidal disruption events. We also consider fast radio bursts and relativistic outflows of high- and low-luminosity gamma-ray bursts. Our study sheds light on the prospects of observing GeV transients with existing and upcoming neutrino facilities.