Stochastic effective theory for scalar fields in de Sitter spacetime

2 May 2024, 16:30
20m
DIAS

DIAS

10 Burlington Rd, Dublin, D04 C932, Ireland

Speaker

Prof. Arttu Rajantie (Imperial College (GB))

Description

The dynamics of the Higgs and other light scalar fields during inflation can have important cosmological consequences, but because of the infrared problem, they cannot be computed using perturbation theory. A powerful alternative is the stochastic Starobinsky-Yokoyama approach, which is based on the observation that on superhorizon distances the field behaves classically, with a noise term produced by subhorizon quantum modes. It has been mostly used to calculate the one-point probability distribution of the field, but its real power lies in describing the asymptotic long-distance behaviour of correlation functions through a spectral expansion. I demonstrate this by calculating isocurvature constraints for scalar dark matter models and decay rates of metastable vacua. I also show how to extend the stochastic theory beyond the overdamped approximation used by Starobinsky and Yokoyama. The parameters of this effective theory are determined at one-loop order in perturbation theory, and do not suffer from the same infrared problems as a direct perturbative computation of observables. Therefore it provides a powerful and accurate way of computing cosmological observables.

Presentation materials