Speaker
Description
If a beam of slow neutrons ($n$) (with kinetic energies less than a few meV) is produced and allowed to propagate through a magnetically shielded vacuum (~nT) before letting it hit a target, then in the presence of baryon number violating interactions some $n$'s can oscillate into $\bar{n}$'s. The produced $\bar{n}$'s can annihilate with the target material producing detectable final state particles e.g. photons and pions. The ESS/NNBAR facility (expected to employ an impressive 200m long propagation length) is expected to improve the sensitivity to the free $n-\bar{n}$ oscillations by three orders of magnitude over the last such search at the ILL. This talk will discuss the exciting physics prospects and phenomenological implications of searches for $n-\bar{n}$ oscillations.