Speaker
Prof.
Bruno Mintz
(UERJ)
Description
The grand partition function of a model of confined quarks is exactly calculated at arbitrary temperatures and quark chemical potentials. The model is inspired by a softly BRST-broken version of QCD and possesses a quark mass function compatible with nonperturbative analyses of lattice simulations and Dyson-Schwinger equations. Even though the model is defined at tree level, we show that it produces a non-trivial and stable thermodynamic behaviour at any temperature or chemical potential. Results for the pressure, the entropy and the trace anomaly as a function of the temperature are qualitatively compatible with the effect of non-perturbative interactions as observed in lattice simulations. The finite density thermodynamics is also shown to contain non-trivial features, being far away from an ideal gas picture.