New results of the NA61/SHINE and HADES collaborations, as well as the updated data from NA49, and the existing data from other collaborations are analyzed within the transport models and the hadron resonance gas (HRG) statistical model. The chemical freeze-out parameters in $p+p$ interactions and central $A+A$ collisions are found and compared with each other in the $\sqrt{s_{NN}}$ = 3.2−17.3...
We study inverse magnetic catalysis in the Nambu--Jona-Lasinio model beyond mean field approximation. The feed-down from mesons to quarks is embedded in an effective coupling constant at finite temperature and magnetic field. While the magnetic catalysis is still the dominant effect at low temperature, the meson dressed quark mass drops down with increasing magnetic field at high temperature...
A power expansion scheme is set up to determine the Wigner function that satisfies the quantum kinetic equation for spin-1/2 charged fermions in a background electromagnetic field. Vector and axial-vector current induced by magnetic field and vorticity are obtained simultaneously from the Wigner function. The chiral magnetic and vortical effect and chiral anomaly are shown as natural...
The preliminary centrality determination procedure and charge hadron multiplicity fluctuations are investigated in the new Ar+Sc data at 13A, 19A, 30A, 40A, 75A, 150A GeV/c with NA61/SHINE at the SPS. The centrality analysis is based on nucleon-spectator energy in the forward hemisphere from the Projectile spectator detector. The scaled variance for all, negatively and positively charged...
The NA61/SHINE experiment aims to discover the critical point of strongly interacting matter and study the properties of the onset of deconfinement. For these goals a scan of the two dimensional phase diagram (T-$\mu_{B}$) is being performed at the SPS by measurements of hadron production in proton-nucleus and nucleus-nucleus interactions as a function of collision energy and system size....
The aim of the NA61/SHINE ion programme is to explore the QCD phase diagram within the range of thermodynamical variables accessible by the SPS. In addition the experiment provides precision hadron production measurements for description of the neutrino beam of the T2K experiment at J-PARC and for simulation of cosmic-ray showers for the Pierre Auger Observatory and KASCADE experiments. The...
The investigation of preliminary results for mean negatively charged pion multiplicities $\langle \pi^- \rangle$ from Ar+Sc collisions is the main topic of the talk.
The data has been taken recently by the NA61/SHINE collaboration for a wide range of momenta - 13, 19, 30, 40, 75 and 150 A GeV/c. Starting with rapidity distibution of differential spectra
$\frac{dn}{dy}$ extrapolated to...
Electromagnetic probes are radiated during the whole time evolution of a heavy-ion collision. They decouple from the collision zone once they are produced and carry valuable information about the properties of matter created inside the hot and dense fireball to the detector.
In particular, the yield of low-mass dileptons was identified to be sensitive to the fireball lifetime, while the slope...
Electromagnetic radiation in heavy-ion collisions at SIS18, FAIR, SPS, RHIC and LHC energies is studied within an approach which uses coarse-grained transport simulations to calculate thermal dilepton and photon emission applying in-medium spectral functions from hadronic many-body theory and partonic production rates based on lattice calculations. The microscopic output from the...
We analyze the production rate of photons from the deconfined medium with a quark propagator obtained from a lattice QCD numerical simulation. We calculate the production rates non-perturbatively at two temperatures above $T_{\rm c}$. The photon-quark vertex is determined gauge-invariantly so as to satisfy the Ward-Takahashi identity. It is found that the vertex correction modifies spectra...
NA61/SHINE at the CERN SPS is a fixed-target experiment pursuing a rich physics program including measurements for heavy ion, neutrino and cosmic ray physics. The main goal of the ion program is to study the properties of the onset of deconfinement and to search for the signatures of the critical point. Specific property of the critical point – increase in the correlation length – makes...
We investigate the kurtosis of the net-proton number and the chiral order parameter within the model of nonequilibrium chiral fluid dynamics for a crossover scenario near the critical point. Our model describes the interplay between a dynamical order parameter and a quark-gluon fluid during the expansion of the hot fireball created in a heavy-ion collision. A subsequent particlization process...
Extensive measurements of azimuthal anisotropy
in heavy-ion collisions, have provided invaluable
insights on the expansion dynamics and the transport properties of the
strongly interacting matter produced in collisions at RHIC and the LHC.
However, recently a number of measurements from high-multiplicity collisions
in small systems at RHIC and LHC, such as p+p, p+A, or d+Au, have...
Dileptons are a unique probe to study microscopic properties of nuclear matter under extreme
conditions of temperature and density achieved in heavy-ion collisions. The low-mass excess radiation
(above cocktail) observed from SIS to top RHIC energies is well understood theoretically in terms of
strict VMD assuming strong broadening of the in-medium rho spectral function. This broadening...
The importance of the RHIC beam energy scan program is that comparing results at different energies (varied in the region where the transition from hadronic to quark matter is expected to occur) allows us to investigate the structure of QCD matter, and the quark-hadron transition. One of the best tools to gain information about the (soft) particle-emitting source is the measurement of...
Non-critical thermal fluctuations are important baselines in search of the critical point for the RHIC beam energy scan program. In this talk, we present our investigations on the non-critical baselines of cumulants of (net-conserved) charge distributions in relativistic heavy ion collisions. By deriving a general formula of multiplicity distribution in connect with the method used in...
Many data in the High Energy Physics are, in fact, sample means. It is shown that
when this exact meaning of the data is taken into account and the most weakly
bound states are removed from the hadron resonance gas, the acceptable fit to the
whole spectra of pions, kaons and protons measured at midrapidity in central Pb-Pb
collisions at $\sqrt{s_{NN}} = 2.76$ TeV is obtained. The invariant...