Speaker
Description
Discovering the nature of dark matter (DM) is one of the fundamental challenges of the modern physics. Indirect DM searches are looking for signatures from annihilation and/or decay of DM particles into standard matter in highly DM dominated cosmic regions, such as the Galactic Center, clusters of galaxies, and dwarf spheroidal satellite galaxies (dSphs) of the Milky Way.
In the widely considered cold DM scenario of weakly interacting massive particles (WIMPs), a flux of gamma rays of energies up to the DM mass is expected and could be accessible by Imaging Atmospheric Cherenkov Telescopes (IACTs). Since the beginning of operations, the MAGIC telescopes are carrying out deep observational campaigns of several promising DM targets, with the aim of detecting such signals or alternatively setting stringent constrains to DM particle models in the TeV mass range.
Here, we report on the present status and future prospects of the indirect DM program by MAGIC, focusing on the latest results achieved with dSph observations, where MAGIC reached the strongest constraints on DM annihilation searches above few hundreds of GeV.