9–15 Jun 2018
Woodlands Conference Center
America/New_York timezone
**** See you at Real Time 2020 ****

Software-Defined Radio Readout System for the ECHo experiment

11 Jun 2018, 17:10
20m
Woodlands Conference Center

Woodlands Conference Center

159 Visitor Center Dr, Williamsburg, VA 23185
Oral presentation DAQ 1

Speaker

Nick Karcher (Karlsruhe Institute of Technology (KIT))

Description

Metallic Magnetic Calorimeters (MMCs) are calorimetric low-temperature particle detectors that are currently strongly advancing the state-of-the-art in energy-dispersive single particle detection. MMCs are typically operated at temperatures well below 100 mK and make use of a metallic, paramagnetic temperature sensor to transduce the temperature rise of the detector upon the absorption of an energetic particle into a change of magnetic flux. An efficient readout of large MMC arrays can be achieved through Microwave SQUID multiplexing. One of the pioneering applications of large MMC arrays is the "Electron capture in Holmium-163 experiment" (ECHo), which aims to investigate the electron neutrino mass in the sub-eV/c$^2$ range. ECHo will use up to 10$^4$ detectors running in parallel to acquire a high statistics spectrum in finite time. The readout of these detector arrays will be conducted using 15 independent FPGA based software-defined radio (SDR) systems, each connected to one microwave SQUID multiplexed readout line with 400 detector channels equally distributed between 4 and 8 GHz. This results in an input data rate of 2.4 Tb/s, which is processed in cascaded stages to channelizes the signals online. Afterwards, the event specific information is extracted in parallel for each channel and eventually stored in the backend server storage. The SDR consists of a two-stage RF mixing electronics, various high-speed, high-resolution DACs/ADCs, as well as a Zynq Ultrascale+ FPGA for the digital processing. This contribution will describe the SDR electronics for ECHo in detail and present the challenges associated with the integration of such heterogeneous systems.

Minioral No
Description Radio DAQ
Speaker Oliver Sander
Institute KIT
Country Germany

Primary authors

Oliver Sander (KIT - Karlsruhe Institute of Technology (DE)) Nick Karcher (Karlsruhe Institute of Technology (KIT)) Dr Oliver Kroemer Marc Weber (KIT - Karlsruhe Institute of Technology (DE)) Dr Sebastian Kempf Mr Mathias Wegner Prof. Christian Enss

Presentation materials