Indico celebrates its 20th anniversary! Check our blog post for more information!

9–15 Jun 2018
Woodlands Conference Center
America/New_York timezone
**** See you at Real Time 2020 ****

Prototype of Front-end Electronics for PandaX-4ton Experiment

14 Jun 2018, 14:35
1h 30m
Woodlands Conference Center

Woodlands Conference Center

159 Visitor Center Dr, Williamsburg, VA 23185
Poster presentation Front End Electronics and Fast Digitizers Poster 2

Speaker

Mr Shuwen Wang (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China;Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China)

Description

At the China Jinping Underground Laboratory, the PandaX-4ton ( Particle AND Astrophysical Xenon phase IV) in planning is a dark matter direct detection experiment with dual-phase Xenon. PandaX-4ton, compared to PandaX-II, has more readout channels and higher time precision requirements. Once incoming WIMPs (Weakly Interacting Massive Particles) collide with Xenon atom, prompt scintillation photons (S1) and delayed electroluminescence photons (S2) are collected by the PMTs, and then fed into front-end electronics which are introduced in this paper. In order to precisely obtain the wave and time information carried by the PMT signals, and to maximally cover the signal dynamic range, a high-gain preamplifier and an eight-channel digitizer with 14-bit resolution and 1 GSps sampling rate have been designed. Besides, the clock synchronization circuit within the digitizer is well-designed to align all the PMT channels. The digitizer also contains gigabit fiber to exchange data with trigger and data acquisition system. The performance of the front-end electronics can meet the requirements for the PandaX-4ton.

Minioral Yes
Description FE board
Speaker Shuwen Wang
Institute USTC
Country China

Primary authors

Mr Shuwen Wang (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China;Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China) Dr Zhongtao Shen (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China; Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China) Mr Keqing Zhao (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China; Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China) Prof. Changqing Feng (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China; Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China) Prof. Shubin Liu (State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China; Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China)

Presentation materials