High power laser facilities capable of generating petawatt (10$^{15}$ W) level pulses are producing peak intensities that are approaching the threshold to a wide range of applications that include high energy physics; laser astrophysics and cosmology; vacuum physics; as well as medical imaging and treatments. State-of-the-art in high power laser systems consistently produce pulses within large...
The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, remains unresolved since Hawking's seminal discovery. So far the investigations remain mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here we point out that relativistic plasma mirrors induced by...
Radiation Pressure Acceleration is quite promising for ion acceleration. In order to improve the laser energy transmission efficiency and restrain instabilities such as RTI and hole boring, an ultra-high intensity, ultra high contrast laser pulse with steep front is required and therefore a plasma lens with near critical density is proposed. When the laser passes through the nearly critical...
We discuss proton acceleration with 10PW lasers. In 2001, we proposed proton acceleration with light pressure for the first time [1]. Then in 2007, we explained that light pressure acceleration is actually multistaged acceleration of collisionless electrostatic shock driven by the laser pressure [2, 3]. However, the method of light pressure is hard to support proton acceleration of energy...
Based on the ongoing construction to the two major European facilities, namely the European XFEL electron accelerator and the ESS relativistic proton accelerator, the state of the art in terms of conventional acceleration will be described: technology, performance, and construction cost.
Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge. The electrons that are accelerated in the backward and forward...