Conveners
Session7
- Vitaliy Fadeyev (University of California,Santa Cruz (US))
The OVERMOS project investigates the use of MAPS, fabricated using a standard low voltage and high resistivity substrate 180nm CMOS technology, for tracking and vertexing in HEP applications.
Following a description of the main features of the proposed CMOS technology, which should guarantee high charge collection efficiency even after high level of dose of radiation, we will detail the design...
The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resitivity substrates with on-chip high-voltage biasing to achieve large depleted active sensor volume. We characterized depleted...
Depleted monolithic CMOS active pixel sensors (DMAPS) have been developed to demonstrate their suitability as pixel detectors in the outer layers of the ATLAS Inner Tracker of High-Luminosity LHC. Since the charge collection by drift is mandatory to achieve the required radiation tolerance and timing resolution, sufficient depletion are needed. Two demonstrators have been fabricated in 150 nm...
Commercial HVCMOS technologies allow design of monolithic particle pixel sensors in the form of systems on a chip. Readout electronics is embedded in charge collection electrodes and particle detection occurs in depleted silicon region. The sensors have excellent efficiency in detection of ionizing radiation. In the past ten years, various smaller and reticle size particle detector prototypes...
The HV-CMOS concept for the next generation silicon detectors for high energy physics at hadron colliders aims to integrate the sensor and the readout electronics on the same chip using commercially available CMOS processes. This will significantly simplify the detector production. In addition the technology has a potential for significant improvement of the spatial resolution and for reducing...