Conveners
Session10
- Suen Hou (Academia Sinica (TW))
Detectors based on Chemical Vapor Deposition (CVD) diamond have been
used extensively and successfully in beam conditions/beam loss monitors
as the innermost detectors in the highest radiation areas of essentially
all LHC experiments. The startup of the LHC in 2015 brought a new
milestone where the first diamond pixel modules were installed in an LHC
experiment (ATLAS) and successfully began...
At present most experiments at the CERN Large Hadron Collider (LHC)
are planning upgrades in the next 5-10 years for their innermost
tracking layers as well as luminosity monitors to be able to take data
as the luminosity increases and CERN moves toward the High Luminosity-LHC
(HL-LHC). These upgrades will most likely require more radiation
tolerant technologies than exist today. As a result...
A novel femtosecond laser based Transient Current Technique (TCT) to probe the charge transport properties of single crystalline Chemical Vapor Deposition (sCVD) diamond sensors will be presented. In this method, the laser beam with the wavelength of 400 nm and pulse duration 30 fs enters the diamond through a polished edge (hence Edge-TCT or E-TCT) and is focused inside the bulk at a known...
The LHC has recently been upgraded to operate at higher energy and luminosity. In addition, there are plans for further upgrades. These upgrades require the optical links of the experiments to transmit data at much higher speed in a more intense radiation environment. We have designed a new optical transceiver for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a...