Speaker
Description
Next generation electric power systems on Navy ships require higher capacity, efficiency, and stability to meet the demands of increasingly complicated grid systems. High-temperature superconducting (HTS) Conductor on Round Core (CORC®) power transmission cables provide unique solutions by offering high operating currents and current densities in a very small cable cross-section. Advanced Conductor Technologies is developing 2-pole dc and 3-phase ac power transmission cables, cable terminations and connectors to be cooled with pressurized cryogenic helium gas for shipboard use. The development and initial test results of 2-pole dc CORC® power transmission cables, rated at 4,000 A per phase, will be discussed. The development is not limited to only the power transmission cables, but also includes CORC® feeder cables that form the connection between the room temperature bus bar and the CORC® power transmission cable located inside the helium gas environment. Methods to significantly increase the current rating to exceed 10 kA per phase, and current densities of over 500 A/mm2 will be discussed. Efforts are underway to develop advanced dielectrics that are sealed against helium gas penetration, to enable operation of superconducting power transmission cables at a voltage in the order of 10 kV or above, resulting in a cable power rating of 10-100 MW.