Conveners
C1PoA - Pulse Tube Performance
- Ali Kashani (Atlas Scientific)
- Alexander Veprik (SCd)
Recovering the acoustic power from the Stirling-type pulse tube cryocooler is of great utility in improving cooling efficiency. In this paper, a two-stage cascade pulse tube cryocooler capable of power recovery is introduced and tested. A displacer, playing a role of phase modification and power transmission, is connected between a primary cooler and a secondary cooler. Experimental...
Stirling type pulse tube cryocoolers are very attractive for cooling of diverse application because it has it has several inherent advantages such as no moving part in the cold end, low manufacturing cost and long operation life. To develop the Stirling-type pulse tube cryocooler, we need to design a linear compressor to drive the pulse tube cryocooler. A moving magnet type linear motor of...
Improvement of high temperature superconducting materials lead to a new development of various applications such as superconducting motor, superconducting power transmission cable and superconducting power generator, etc. Those applications require a high capacity and high reliable cooling solution to keep high temperature superconducting materials being around 80K.
In order to meet such...
We report construction of a glass pulse-tube cryocooler with regenerator, pulse-tube, inertance tube and reservoir. The purpose of the device is as a teaching tool, and to generate curiosity. The glass system enables one to observe the inside of the cryocooler while it is operating, create curiosity for first-time observers, and encourage their subsequent questions and investigation. Frost...
A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (PTC) operating at around 40 K has been developed based on numerical simulation by SAGE software and previous experiment experience. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz frequency, the...
As very low temperature high frequency pulse tube cryocooler has been a hot topic in the field of pulse tube cryocooler, improving the cryocooler’s performance is a common goal of researchers. By integrating the former results, we found that regenerative material is a key factor for the improvement of pulse tube cryocooler’s efficiency. In this paper, some experi-ments were conducted to find...
A recent modification to the cylindrical threaded adjustable inertance tube for pulse tube refrigerators links the two helical flow channels existing between the threads of the inner and outer screws in parallel. The phase shifting performance of an earlier design that was limited by fluid leakage occurring between the channels, is now significantly improved by connecting the two channels in...
Numerical simulation models for GM type pulse tube cryocooler reported so far require pressure pulse as an input which does not take rotary valve geometry into the consideration and cannot predict the pressure ratio reduction while the cooling down occurs. The unique feature of the proposed model is that instead of fixed pressure waveform as an input to the numerical model, it is capable of...
Pulse tube cryocoolers are used for cooling applications, where very high reliability is required as in space applications. It is achieved due to the absence of moving parts and lack of contaminations. The Pulse tube cryocooler requires an additional buffer volume depending on the temperature and cooling load. A miniature single stage Inertance Pulse Tube Cryocooler is proposed which operates...