Conveners
Identification and Tagging Mini-Workshop: General tagging session
- Steven Randolph Schramm (Universite de Geneve (CH))
- Sergei Gleyzer (University of Florida (US))
Description
Tagging Mini-Workshop Part II
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/
https://arxiv.org/abs/1701.08784
Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We first optimize a network architecture to identify top quarks in Monte Carlo simulations of the Standard Model...
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the...
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained...
Deep Convolutional Neural Networks (CNNs) have been widely applied in computer vision to solve complex problems in image recognition and analysis. In recent years many efforts have emerged to extend the use of this technology to HEP applications, including the Convolutional Visual Network (CVN), our implementation for identification of neutrino events. In this presentation I will describe the...
https://arxiv.org/abs/1701.05927
We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images -- 2D representations of energy depositions from particles interacting with a calorimeter. We propose a simple...
A boosted decision tree is used to identify unique jets in a recently released conference note describing a search for long lived particles decaying to hadrons in the ATLAS Calorimeter. Neutral Long lived particles decaying to hadrons are “typical” signatures in a lot of models including Hidden Valley models, Higgs Portal Models, Baryogenesis, Stealth SUSY, etc. Long lived neutral particles...