Conveners
Neutrino Parallel: Neutrino 1
- Hiro Tanaka
Neutrino Parallel: Neutrino 2
- Jeanne Wilson-Hawke
Neutrino Parallel: Neutrino 3
- David Sinclair
Neutrino Parallel: Neutrino 4
- Clarence Virtue
Neutrino Parallel: Neutrino 5
- Chris Jillings
Neutrino Parallel: Neutrino 6
- Chris Jillings
Neutrino Parallel: Neutrino 7
- Thierry Lasserre
Neutrino Parallel: Neutrino 8
- Jeanne Wilson-Hawke
Description
Parallel Neutrino Talks
A review of the theory and phenomenology of neutrino electromagnetic properties is presented. A massive neutrino even in the easiest generalization of the Standard Model inevitably has nonzero electromagnetic characteristics, at least nonzero magnetic moment. Although its value, determined by the neutrino mass, is very small, in other BSM theories much larger values of magnetic moments are...
A minimal extension of the electroweak standard model with a massive neutrino allows a non zero magnetic moment, with the neutrino magnetic moment proportional to the neutrino mass. The experimental evidence from solar, reactor, atmospheric and accelerator neutrinos has demonstrated that neutrinos are massive, and may thus possess a non-null magnetic moment.
The limits of the effective...
The studies on neutrinos and dark matters rely on the direct detection with detectors composed by pure atom or crystal. As current experimental searches for neutrinos and dark matters have lowered the detector threshold down to the sub-keV regime [1, 2], accurate many-body calculations for atomic ionization are warranted for giving reliable results of experimental comparisons. With the...
Since the discovery of neutrino oscillations in 1998 and the assessment of the Mikheev-Smirnov-Wolfenstein (MSW) effect, steady progress had been made in understanding neutrino flavor conversions in astrophysical environments. Neutrino self-interactions have proven to complicate the problem, making the evolution equations intrinsically nonlinear, and have triggered a decade of theoretical...
Nonzero neutrino masses are required by the existence of flavor oscillations, with values at least of the order of 50 meV. We consider the gravitational clustering of relic neutrinos with minimal masses at the Earth neighborhood, where their number density is enhanced with respect to the average cosmic density. The local overdensity is found using N-one-body simulations, including an improved...
Double electron capture is a rare nuclear decay process in which two orbital electrons are captured simultaneously. Recently, this process has been attracting attention both theoretically and experimentally. Natural xenon contains the double electron capture nuclei 124Xe with an abundance of 0.095%. Even two-neutrino mode has not been observed for the nuclei so far. The XMASS program is...
XENON1T, widely known as the next step in the challenging hunt for direct dark matter detection, provides the possibility for the study of interesting physics beside its main purpose. One promising example for this is the search for different beta decay modes of $^{124}$Xe. Here the process of Two Neutrino Double Electron Capture (2$\nu$DEC) is the first one to look for as it is predicted by...
The SNO+ experiment is located at SNOLAB in Sudbury, Ontario, Canada. It will employ 780 tons of liquid scintillator loaded, in its initial phase, with 1.3 tons of $^{130}$Te (0.5% by mass) for a low-background and high-isotope-mass search for neutrino-less double beta decay. SNO+ uses the acrylic vessel and PMT array of the SNO detector with several experimental upgrades and necessary...
CUPID-0 (former LUCIFER experiment) represents the first demonstrator towards CUPID (Cuore Upgrade with Particle IDentification). CUPID-0 -consisting of an array of 24 enriched Zn82Se scintillating bolometers totalling 3.5 10^25 82Se emitters- has started its background measurement on March 2017. Thanks to the scintillation signal readout, the troublesome alpha-induced background is...
The MAJORANA Collaboration has assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge with the goal of establishing the required background and scalability of a Ge-based next-generation tonne-scale experiment. The MAJORANA DEMONSTRATOR consists of 44 kg of high-purity Ge (HPGe) detectors (30 kg enriched in $^{76}$Ge) with a low-noise p-type...
The goal of the NEXT collaboration is to observe neutrinoless double beta decay in gaseous 136-Xe using a time projection chamber (TPC) capable of doing both energy and tracking reconstruction from light produced via electroluminescence (EL).
The collaboration is now taking data with NEXT-White (NEW), phase-I of the NEXT-100 detector. With about half of the NEXT-100 linear dimensions (about...
Experimental searches for neutrinoless double-beta decay (0$\nu\beta\beta$) are one of the most active research topics in neutrino physics. Its observation is in fact of major importance since it will prove the Majorana nature of neutrinos and may give access to their absolute mass scale.
Installed at Modane Underground Laboratory (LSM), the NEMO experiments provide a unique approach...
The Bayesian discovery probability of future experiments searching for neutrinoless double-$\beta$ decay is evaluated under the popular assumption that neutrinos are their own antiparticles. A Bayesian global fit is performed to construct a probability distribution for the effective Majorana mass, the observable of interest for these experiments. This probability distribution is then combined...
The nEXO Collaboration is designing a 5-tonne detector with initial neutrinoless double-beta decay sensitivity close to $10^{28}$years. The nEXO detector will be a homogeneous liquid xenon-136 time projection chamber inspired by the very successful EXO-200 detector. Energy resolution, event topology and event localization in the large homogeneous detector will work in concert to measure and...
Investigation of double beta decay (β+EC, EC/EC) of 58Ni was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the ultra-low background spectrometer Obelix and a sample of natural Ni. Spectrometer Obelix is based on P-type coaxial HPGe detector with a sensitive volume of 600 cm3 and relative efficiency of 160 %. The detector part of the cryostat is encircled by...
Fifty years ago, Ettore Fiorini and collaborators published the first results of a $^{76}$Ge based search for neutrinoless double beta decay (0νββ). In the ensuing five decades, the sensitivity for 0νββ searches using $^{76}$Ge has increased by five orders of magnitude, from the 1967 limit of T$_{1/2}$ ≥ 3 × 10$^{20}$ years to GERDA’s recent result of T$_{1/2}$ ≥ 5.3 × 10$^{25}$ years. The...
Neutrino-less double beta decay (0$\nu\beta\beta$) is acquiring great interest
after the confirmation of neutrino oscillation
which demonstrated nonzero neutrino mass.
Measurement of 0$\nu\beta\beta$ provides a test for the Majorana
nature of neutrinos
and gives an absolute scale of the effective neutrino mass.
In order to search for 0$\nu\beta\beta$ of $^{48}$Ca,
we proposed CANDLES detector...
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium detectors totaling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in...
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment with the objective to determine the effective electron anti-neutrino mass with an unprecedented sensitivity of 0.2 eV/c² at 90% C.L. in a model-independent way. The measurement method is based on precision beta-decay spectroscopy of molecular tritium.
The experimental setup consists of a high luminosity windowless...
The Electron Capture in $^{163}$Ho (ECHo) experiment is designed to investigate the electron neutrino mass $m_{\nu_e}$ with sub-$eV$ sensitivity by the analysis of the electron capture (EC) energy spectrum of $^{163}$Ho.
The sensitivity on the electron neutrino mass is crucially related to the energy available for the decay $Q_{EC}$ = $2833(30$stat$)(15$sys$)\,eV$, which has been...
Project 8 is a tritium endpoint neutrino mass experiment utilizing a phased program to achieve sensitivity to the range of neutrino masses allowed by the inverted mass hierarchy. The Cyclotron Radiation Emission Spectroscopy (CRES) technique is employed to measure the differential energy spectrum of decay electrons with high precision. We present an overview of the Project 8 experimental...
The MAJORANA DEMONSTRATOR is currently searching for neutrinoless double-beta decays in germanium-76 and will demonstrate the feasibility to deploy a tonne-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium detectors totaling 44.1 kg, of which 29.7 kg is enriched, located at the 4850' level of the Sanford Underground...
In this talk, we will summarize the current status of global neutrino oscillation analyses in the three-neutrino framework. We will also discuss some scenarios where the measurement of the CP violation phase could be significantly affected by the presence of neutrino physics BSM.
The DeepCore infill array of the IceCube Neutrino Observatory enables observations of atmospheric neutrinos with energies as low as 5 GeV. Using a set of 40,000 neutrino events with energies ranging from 5.6 - 56 GeV recorded during three years of DeepCore operation, we measure the atmospheric oscillation parameters $\theta_{23}$ and $\Delta m^2_{32}$ with precision competitive with...
The measurement of the Neutrino Mass Ordering (NMO), i.e. the ordering of the three neutrino mass eigenstates, is one of the major goals of many future neutrino experiments. One strategy is to measure matter effects in the oscillation pattern of atmospheric neutrinos as proposed for the PINGU extension of the IceCube Neutrino Observatory.
Already, the currently running IceCube/Deepcore...
The IceCube-DeepCore detector has unambiguously observed muon-neutrino disappearance due to oscillations of atmospheric neutrinos. The associated tau-neutrino appearance may be measured as a statistical excess of cascade-like events in the detector. New high statistics event selections, optimized for the study of oscillations around 10 GeV, provide increased sensitivity for the measurement of...
The IceCube Gen2/Phase1 detector has been proposed to in-fill IceCube's DeepCore region with seven new, densely-instrumented strings. These strings would provide the world's best sensitivity to tau neutrino appearance, with a precision of better than 10%, providing the most stringent test of unitarity in the tau sector to date. Gen2/Phase1 would also have improved sensitivity to muon...
The 760 ton liquid argon ICARUS T600 detector performed a successful three-year physics run at the underground LNGS laboratories, studying neutrino oscillations with the CNGS neutrino beam from CERN, and searching for atmospheric neutrino interactions in cosmic rays. A sensitive search for LSND like anomalous nu_e appearance was performed, contributing to constrain the allowed parameters to a...
The OPERA experiment reached its main goal by proving the appearance of tau-neutrinos in the CNGS muon neutrino beam. A total sample of 5 candidates fulfilling the analysis defined in the proposal was detected with a S/B ratio of about ten allowing to reject the null hypothesis at 5.1 sigma. The search has been extended to nu_tau-like interactions failing the kinematical analysis defined in...
T2K is a long-baseline neutrino oscillation experiment taking data since
2010. A neutrino beam is produced at the J-PARC accelerator in Japan and is
sampled at a Near Detector complex 280 m from the
neutrino production point and at the far detector, Super-Kamiokande.
Beams predominantly composed of muon neutrinos or muon anti-neutrinos have been
produced by changing the currents in the...
NOvA is a long-baseline neutrino oscillation experiment utilizing the NuMI beam from Fermilab and a 14 kton liquid scintillator far detector in northern Minnesota. Recent results for both the muon-neutrino disappearance and the electron-neutrino appearance channels will be discussed, as well as improvements and cross-checks for our next round of analyses.
All neutrino oscillation experiments face the problem of reconstructing the incoming neutrino energy using only the visible interaction products. Unfortunately, the initial neutrino interaction is not well understood, and some of the interaction products not are visible. In preparation for the analysis of neutrino oscillation data collected using liquid argon time projection chambers, the...
Hyper-Kamiokande is a next generation water Cherekov detector consisting of 2 tanks, each with 187 kton fiducial mass, to be built in a staged approach. Hyper-Kamiokande will detect neutrinos produced by the upgraded J-PARC accelerator complex, as well as atmospheric neutrinos. It will enable us to search for CP violation in the lepton sector with an order of magnitude more data than current...
Hyper-Kamiokande (Hyper-K) is a next generation water Chrenkov detector in Japan
consisting of two identical detectors (2x260 kton) with a staged construction.
Main goals of Hyper-K are a definitive measurement of CP violation
and neutrino mass ordering determination using beam neutrinos from J-PARC.
By relocating the 2nd detector in Korea with more than 3 times longer baseline
and more matter...
The proposed Hyper-Kamiokande experiment (Hyper-K) is a next generation large water Cherenkov (WD) detector with a broad physics program consisting of neutrino beam measurements in search of leptonic CP violation, astrophysical measurements and a search for proton decay. Hyper-K will act as the far detector to measure the oscillated neutrino flux from the long-baseline beam of 0.6 GeV...
The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring delta_CP with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from...
The reference design of the near detector for the LBNE/F experiment is a high-resolution Fine-Grained Tracker (FGT) capable of precisely measuring all four species of neutrinos. Other detector options under consideration are liquid-argon and gaseous-argon TPCs, as well as a hybrid between the detector concepts. The goal of the ND is to constrain the systematic errors below the corresponding...
Borexino is a 300 tons sub-MeV liquid scintillator solar neutrino detector
which has been running at the Laboratori Nazionali del Gran Sasso (Italy) since 2007.
Thanks to its unprecedented radiopurity, it was able to measure the
flux of 7Be, 8B, pp, and pep solar neutrinos and to detect geo-neutrinos. A reliable simulation of the detector is an invaluable tool for all the Borexino physics...
Super-Kamiokande (SK), a 50 kton water Cherenkov detector in Japan, is observing neutrinos and searching for proton decay and dark matter decays. The installation of new front-end electronics in 2008 marks the beginning of the 4th phase of SK (SK-IV). With the improvement of the water circulation system, calibration methods, reduction cuts, this phase achieved the lowest energy threshold thus...
Supernova explosions in our galaxy may be rare, but supernovae themselves are not. On average, there is one ccSN somewhere in the universe each second. The neutrinos emitted from all of these ccSN since the onset of stellar formation have suffused the universe. We refer to this thus-far unobserved flux as the “relic” supernova neutrinos.
The flux of the supernova relic neutrinos is expected to...
We calculate the solar neutrino and antineutrino flux in the keV energy range. The dominant thermal source processes are photo production (γe → eνν ̄), bremsstrahlung (e + Ze → Ze + e + νν ̄), plasmon decay (γ → νν ̄), and pair emission in free-bound and bound-bound transitions of partially ionized elements heavier than hydrogen and helium. To calculate the latter we use libraries of...
Astroparticle Physics in Hyper-Kamiokande
The Hyper-Kamiokande is a next generation water Cherekov detector consisting of two tanks, each with 187 kton fiducial mass, to be built in a staged approach. The total fiducial mass will be nearly 20 times larger than the highly successful Super-Kamiokande while significantly improved photodetectors will be used with the same 40 % photocoverage. The...
The Deep Underground Neutrino Experiment (DUNE) experiment, a 40-kton underground liquid argon time-projection-chamber detector, will have unique sensitivity to the electron flavor component of a core-collapse supernova neutrino burst. We present expected capabilities of DUNE for measurements of neutrinos in the few-tens-of-MeV range relevant for supernova detection, and the corresponding...
The ANTARES deep sea neutrino telescope, installed at the bottom of the Mediterranean Sea, has been continuously taking data for more than ten years. Thanks to its excellent angular resolution in both the muon channel and the cascade channel (included by all neutrino flavours), ANTARES offers unprecedented sensitivity for neutrino source searches in the Southern sky in the TeV-PeV energy...
A new estimate of the diffuse supernova neutrino background (DSNB) is presented, for scenarios with different core collapse rates and different distribution of black-hole forming collapses with the progenitor mass. The $\bar \nu_e$ component of the DSNB above 11 MeV of energy can be as large as $\phi \sim 3.7~{\rm cm^{-2} s^{-1}}$, and the contribution of black hole-forming collapses could...
We explore oscillations of the solar 8B neutrinos in the Earth in detail. The relative excess of night νe events (the Night-Day asymmetry) is computed as function of the neutrino energy and the nadir angle η of its trajectory. The finite energy resolution of the detector causes an important attenuation effect, while the layer-like structure of the Earth density leads to an interesting...
Double Chooz (DC) is a reactor neutrino oscillation experiment based at the Chooz nuclear power plant in Northern France. In 2011 DC was the first reactor neutrino experiment to report indication of non-zero $\theta_{13}$, the last unmeasured neutrino mixing angle of the PMNS matrix. This result was confirmed in 2012 by independent experiments. Before the completion in December 2014 of the...
RENO (Reactor Experiment for Neutrino Oscillation) is the first reactor
neutrino experiment which began data-taking using both near and far detectors in 2011.
The last unknown neutrino mixing angle theta_13 in the PMNS matrix was successfully
measured in 2012 by RENO using 220 days of data from 6 reactors in Yonggwang, Korea.
In 2015 RENO made the first measurement of |dm^2_ee| and obtained...
The Daya Bay Reactor Neutrino Experiment utilizes three pairs of powerful nuclear reactors as anti-neutrino sources, and employes eight functionally identical detectors with large target volume for near-far relative measurement. The detectors were placed underground with mountains to provide enough shielding for cosmic rays induced background reduction.
Now, the experiment has achieved...
The PROSPECT experiment is designed to make a reactor model-independent search for short-baseline neutrino oscillations and measure the antineutrino spectrum associated with
235U to high-precision. PROSPECT consists of a 4 ton highly-segmented
6Li-loaded liquid scintillator detector and will be operated at the High Flux Isotope Reactor (HFIR) at ORNL at baselines ranging from 7 to 12 m....
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose underground experiment and the largest liquid scintillator (LS) detector going for neutrino mass hierarchy, precise neutrino oscillation parameter measurement and studies of other rare processes which include but not limited to solar neutrino, geo-neutrino, supernova neutrinos and the diffuse supernova neutrinos...
The Earth is an anti-neutrino star, radiating more than 10$^{25}$ anti-neutrinos to space every second. This immense luminosity is fueled predominantly by the ß$^-$ decays of radiogenic isotopes in the Earth's crust and mantle. The anti-neutrinos produced by these decays, called geo-neutrinos due to their geophysical origin, give us important clues about the composition of the Earth's interior...
Thanks to an overburden of 6 km water equivalent and to a large mass of ultrapure liquid scintillator, the SNO+ detector is designed for performing low energy neutrino physics measurements and will address several fundamental physics goals, among which the study of geoneutrinos. The geoneutrino signal produced by U and Th distributed in the whole Earth’s mantle is comparable to that originated...
In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. In this work, we explore the possibilities for resolving this degeneracy using a combination of oscillation results with...
The neutrino spectra and flux were reevaluated during the preparation of the current experiments devoted to the measurement of $\theta_{13}$. Some discrepancies between data and the theoretical predictions in some neutrino experiments at short distances were observed when using the new predicted flux and spectra. This problem has been called the Reactor Antineutrino Anomaly (RAA), which...
The CeSOX experiment will search for light sterile neutrinos with an intense 144Ce-144Pr antineutrino generator deployed next to the Borexino detector located at the Laboratory Nazionali del Gran Sasso. Data taking is expected to start during spring 2018.
The main goal of the DANSS project is to probe SBL reactor antineutrino
oscillations to the sterile state with a compact cubic meter highly
segmented neutrino spectrometer made of 2500 plastic scintillator strips
(100 x 4 x 1 cm^3) covered with gadolinium loaded reflective coating and
read out by 2500 SiPMs and 50 PMTs via WLS-fibers. The DANSS detector has
been built under a 3 GW commercial...
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $\theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The...
It has been recently speculated that new “secret” interactions among sterile neutrinos, mediated by a gauge boson X, can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term in the flavour evolution equation for the active-sterile system.
In this way it would be possible to relieve the tension among laboratory sterile neutrinos...
A light sterile neutrino that mixes with the active states has been proposed to explain anomalies in short baseline neutrino oscillation data. Constraints on the mass and mixing parameters are usually presented by showing results from complementary neutrino oscillation experiments. However, measurements of the Cosmic Microwave Background, most recently by the Planck satellite, constrain the...
Super-Kamiokande (SK) is a 50 kilotonne water Cherenkov detector aiming for the detection of several physics such as solar, atmospheric, astrophysical neutrinos, proton decay, WIMP dark matter, etc. It has been running over 20 years since 1996, and achieved several remarkable outcomes in the field of the particle and astrophysics, one of which is the discovery of the neutrino oscillation,...
ORCA is the low-energy branch of KM3NeT, the next-generation underwater Cherenkov neutrino detector currently being built in the Mediterranean Sea. The detector will be used to determine the neutrino mass hierarchy, i.e. whether the third mass eigenstate is heavier or lighter than the other two states.
Atmospheric neutrinos traversing the Earth are affected by matter effects, which lead to...
The Cryogenic Underground Observatory for Rare Events (CUORE)
is the first bolometric experiment searching for neutrinoless double
beta decay that has been able to reach the 1-ton scale. The detector
consists of an array of 988 TeO2 crystals arranged in a cylindrical
compact structure of 19 towers. The construction of the experiment and,
in particular, the installation of all towers in...
The EXO-200 experiment has made both the first observation of the double beta decay in Xe-136 and the most precisely measured half-life of any two-neutrino double beta decay to date. Consisting of an extremely low-background time projection chamber filled with ~150 kg of enriched liquid Xe-136, it has provided one of the most sensitive searches for the neutrinoless double beta decay using the...
The study of the neutrino electromagnetic (EM) properties opens a door to explore physics beyond the Standard Model. The neutrino magnetic moment (NMM) have been the most studied neutrino EM property since the neutrino was proposed in 1930 by Wolfgang Pauli. If we consider Majorana neutrinos, the NMM matrix will be composed by three transition magnetic moments (TMM) which give us information...