Speaker
Rui Zheng
(UC Davis)
Description
Electroweakly charged fermions carrying a strong but dark self-interaction can be pair produced at the LHC and form a bound state. If the bound state is a vector that carries net electric charge, it can be produced through the Drell-Yan process and decay dominantly into the SM $W^{\pm}$ plus a hidden scalar $\phi$, which later decays into SM $b\bar{b}$ through a Higgs mixing. The collider process exists naturally in the $\lambda$-SUSY or Twin-Higgs models, in which $\phi$ can be the singlet scalar of the $\lambda SH_uH_d$ coupling or a $0^{++}$ glueball generated by the twin-QCD. We study the LHC reach of the charged bound state decay and present bounds both in the simplified model and in the $\lambda$-SUSY and Twin-Higgs models.
Authors
Lingfeng Li
Dr
Ennio Salvioni
Dr
Yuhsin Tsai
Rui Zheng
(UC Davis)