The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The VELO detector will be changed for the upgrade of the LHCb detector to be able to run at 5 times higher instantaneous luminosity. The modules will each be equipped with 4 silicon hybrid pixel tiles, each...
The High Luminosity Large Hadron Collider (HL-LHC) at CERN is expected to collide protons at a centre-of-mass energy of 14 TeV and to reach the unprecedented peak instantaneous luminosity of $5\cdot10^{34}\,{\rm cm^{-2} s^{-1}}$ with an average number of pileup events of 140. This will allow the ATLAS and CMS experiments to collect integrated luminosities up to $3000\,{\rm fb^{-1}}$ during the...
ALICE is the experiment specifically designed for the study of the Quark-Gluon Plasma in heavy-ion collisions at the CERN-LHC. The ALICE detector will be upgraded during the LHC Long Shutdown 2, planned for 2019-2020, in order to fully exploit the large integrated luminosity that will be provided by the LHC in Run 3 and Run 4.
The Muon Forward Tracker (MFT), an internal tracker added in the...
The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors...
The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies...
The era of High Luminosity LHC will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is 5*10^34cm^-2s^-1, possibly reaching an integrated luminosity of 3000fb-1 by the end of 2037. CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The...
The construction of the new e+e- super flavor factory SuperKEKB in Tsukuba, Japan has been finalized
and the machine is designed to deliver an instantaneous luminosity 40 times higher than its predecessor KEKB.
For high-performance vertex reconstruction, the Belle II experiment will be equipped with a highly granular,
ultra-transparent active pixel detector (PXD) very close to the interaction...
The Belle II experiment at the SuperKEKB collider is the next-generation flavor factory, which will operate at an unprecedented instantaneous luminosity of 8×1035 cm-2s-1, about 40 times larger than its predecessor Belle experiment. Its vertex detector is composed of a two-layer DEPFET based pixel detector (PXD) and four-layer double-sided silicon...
The Mu3e experiment is searching for the lepton flavour violating decay μ+→e+e−e+. In an environment of up to 10^9 muon decays per second the detector needs to provide precise vertex, time and momentum information to suppress both physics and accidental background. The detector consists of cylindrical layers of 50 μm thin High Voltage Monolithic Active Pixel Sensors (HV-MAPS) placed in a 1 T...