The objective of the work presented in this talk is the development of new position sensitive detectors with low signal amplification useful also for timing applications and called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications.
We will present the last experimental results...
The CMS experiment will change it’s silicon tracker completely during phase II upgrade. There is need to develop light and high precision and durable mechanical structure for silicon sensor. The prime purpose of this should also be reducing material in the silicon tracker detector. The group at IIT Madras is heavily involved in R&D of production of this material. We have produced high...
The ATLAS experiment is planning a major upgrade of its tracking detectors during the Phase-II LHC shut down, to better take advantage of the increased luminosity of the HL-LHC. To this end, new CMOS sensors are being developed. The Edge-Tracient Current Technique (Edge-TCT) measurement method and its latest subsequent preliminary results on the TowerJazz 180nm CMOS technology sensor are...
The use of silicon vertex detectors has been used frequently in particle physics and astrophysics detectors. They have been used in astrophysics satellites to detect X-rays, gamma rays and matter/anti-matter as well as in particle physics experiments at CERN or KEK.
During the last years, physics community has been paid attention to the noise issues in this type of detectors. As a result,...
The LHCb Experiment will be upgraded to a trigger-less system reading out the full detector at 40 MHz event rate with all selection algorithms executed in a CPU farm. The upgraded Vertex Locator (VELO) will be a hybrid pixel detector read out by the "VeloPix" ASIC with on-chip zero-suppression. The upgrade of the LHCb experiment will be installed during the shut-down LS2 of LHC in 2019-2020....
The material budget of a particle physics experiment is a characteristic figure governing its overall performance and detailed knowledge of the material budget of the single components is required for precise modelling of the detector. Beam telescopes, a standard tool in sensor R&D for high-energy physics, allow for the measurement of position-resolved material budgets delivering valuable...
Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a...
The architecture of the first large area $2\times 1 cm^2$ MuPix8 prototype, produced in an AMS $180 nm$ HV-CMOS process, is presented.
The MuPix8 chip is a High Voltage Monolithic Active Pixel Sensor (HV-MAPS) being developed for the Mu3e experiment which will search for the lepton flavour violating decay $\mu^{+} \rightarrow e^{+}e^{-}e^{+}$ with an unprecedented sensitivity of one in...
The CMS phase II upgrade outer tracker is built from modules each consisting of two silicon sensors and associated electronics and mechanics. One module type, known as the "PS" module, contains one pixel sensor and one strip sensor that must be assembled to a relative rotational alignment of 800 micro radians. An automated module assembly system is proposed as an alternative to a manual,...
LHCb is a dedicated experiment searching for new physics by studying CP violation and rare decays of b and c quarks. The LHCb silicon vertex detector (VELO) is a crucial component of the experiment. The detector provides precision space points close to the interaction point and thus used to reconstruct b decay vertices, in both the trigger and offline track reconstruction as well as being an...
Efficient and precise reconstruction of the primary vertices in LHC collisions is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of the primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods...