Conveners
3rd Session: Monday PM1
- Dan Faircloth (S)
Radioactive ion beam facilities produce radioisotopes for experiments that range from nuclear structure studies, astrophysics and medicine, to chemistry, biology or materials science. Following production, these exotic isotopes are ionized to enable acceleration into an ion beam for transportation, purification and delivery to experiments. There are some rather specific ion source requirements...
The Rutherford Appleton Laboratory (RAL) is home to the ISIS Pulsed Spallation Neutron and Muon Facility and the Front End Test Stand (FETS). Both of these operational facilities use a Penning-type surface-plasma negative hydrogen (H$^–$) ion source. For research and development of the Penning H$^–$ source, a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. The...
A dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators is only possible by assessing the processes occurring in the plasma. However, due to the typically very compact source design, diagnostic access is very difficult and often limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to gain spatially...
The U.S. Spallation Neutron Source (SNS) now operates with 1.2 MW of beam power on target with the near-term goal of delivering 1.4 MW and a longer-term goal of delivering > 2 MW required by the planned Proton Power Upgrade (PPU) and Second Target Station (STS) projects. In early of 2018 we plan to replace the entire 2.5 MeV injector configuration which includes the ion source, Low Energy...
The beam brightness of the J-PARC (Japan Proton Accelerator Research Complex) cesiated rf-driven Hˉ ion source has been increased by using several unique measures, including low plasma electrode temperature, slight water feeding in hydrogen plasma and so on [1-3]. The J-PARC source enables high energy linear accelerators to eject a beam with 60 mA peak intensity. The conditions to minimize the...