The ITER neutral beam system will be equipped with large RF driven negative ion sources, with a cross section of 0.9 m x 1.9 m which have to deliver a D$^-$ current of 40 A accelerated to 1 MeV. The negative ions are produced by surface conversion of hydrogen atoms and ions on caesium layers. These giant sources will be tested from 2018 onwards at the neutral beam test facilities SPIDER and...
Long pulse beam accelerations with MeV-class hydrogen negative ions have been demonstrated by using Multi-Aperture and Multi-Grid (MAMuG) accelerators toward high power neutral beam injector (NBI) required in JT-60SA and ITER. This paper reports that pulse duration of the ITER-relevant current density of hydrogen negative ion beams at 1 MeV has been successfully extended from 0.4 s to 60 s by...
The constant need for higher beam intensity of multiply charged ion beams is a strong motivation to investigate high frequency electron cyclotron resonance ion sources. The use of NbTi superconducting coils to generate the ion source magnetic field was successfully demonstrated up to the 28 GHz ECR frequency in many laboratories. Lanzhou laboratory is developing a 45 GHz ion source requiring...
The Extended EBIS will be comprised of two closely coupled RhicEBIS superconducting solenoids to provide a longer ion trap for a 40-50% intensity upgrade. The expected intensity at the Extended EBIS exit is 2.6 x 10$^9$ Au$^{32+}$/pulse and approximately 2.1 x 10$^9$ Au$^{32+}$/pulse at the Booster ring entrance. The electron optics of the gun and collector regions remains essentially the...
The new Krion-6T Electron String Ion Source (ESIS) has been recently developed at JINR as a prototype of the ion source for the Nuclotron-based Ion Collider fAcility(NICA) project [1]. The recent experiments with the Krion-6T ESIS have been done at considerably new physics conditions in continuation of a recent works of our group on basic studies of “electron strings” and its use for highly...
Radioactive ion beam facilities produce radioisotopes for experiments that range from nuclear structure studies, astrophysics and medicine, to chemistry, biology or materials science. Following production, these exotic isotopes are ionized to enable acceleration into an ion beam for transportation, purification and delivery to experiments. There are some rather specific ion source requirements...
The Rutherford Appleton Laboratory (RAL) is home to the ISIS Pulsed Spallation Neutron and Muon Facility and the Front End Test Stand (FETS). Both of these operational facilities use a Penning-type surface-plasma negative hydrogen (H$^–$) ion source. For research and development of the Penning H$^–$ source, a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. The...
A dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators is only possible by assessing the processes occurring in the plasma. However, due to the typically very compact source design, diagnostic access is very difficult and often limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to gain spatially...
The U.S. Spallation Neutron Source (SNS) now operates with 1.2 MW of beam power on target with the near-term goal of delivering 1.4 MW and a longer-term goal of delivering > 2 MW required by the planned Proton Power Upgrade (PPU) and Second Target Station (STS) projects. In early of 2018 we plan to replace the entire 2.5 MeV injector configuration which includes the ion source, Low Energy...
A new tandem type source on the basis of electron cyclotron resonance (ECR) plasma has been constructing for producing synthesized ion beams in Osaka Univ. [1] Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely in the second stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these...
A high flux, low energy ion beam facility has been designed, developed and commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. [1, 2]. It mainly consists of a 2.45 GHz microwave ion source, a compact multi-electrode extraction system and an experimental chamber for performing experiments using intense ion beams in the energy range of a few keV to a few tens of keV....
Currently, the 28 GHz electron cyclotron resonance ion source (ECRIS) has been developed to produce a high current heavy ion at korea basic science institute (KBSI). The high voltage platform of 28 GHz ECRIS is essential to deliver an ion beam to the next acceleration stage. In order to ensure the electrical safety, the high voltage platform has been designed considering dielectric...
Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic...
It is very likely that a long lifetime of cesiation in SNS RF surface plasma sources (SPS) can be connected with deposition into the emitter/converter cone and to the discharge chamber some specific carbon films.
The work function dependence for graphite with alkali deposition has no minimum typical for metals and semiconductors and a final work function is higher. By this reason the...
Design of the high-current ion injector for ions with $z/A≥1/3$ is described. The system consists of a laser-plasma generator based on a repetition rate CO$_2$ laser, a vacuum target chamber with optical focusing system, a beam extraction and transport system, and RFQ accelerator with $z/A≥1/3$. The goal of the work is to optimize parameters of all of the above components for maximum ion beam...
Electron Beam Ion Source (EBIS) has been one of the widely used table-top devices for the production of highly charged ions due to its high purity of charge states. At Korea Multipurpose Accelerator Complex (KOMAC), we have constructed a compact EBIS test bench, consisting of a EBIS-A (advanced EBIS from Dreebit GmbH, Germany), a Wien filter and a Faraday cup. The Wien filter with a permanent...
IsoDAR is an experiment under development to search for sterile neutrinos using the isotope Decay-At-Rest (DAR) production mechanism, where protons impinging on $^9$Be create neutrons which capture on $^7$Li which then beta-decays producing $\bar{\nu}_e$. As this will be an isotropic source of $\bar{\nu}_e$, the primary driver current must be large (10 mA cw) for IsoDAR to have sufficient...
Compact H$^{+}$ ECR Ion Source using permanent magnets is under development. A pulsed gas injection system, achieved by a fast piezo gas valve, can reduce the gas load to a vacuum evacuation system. This feature is suitable when the ion source is closely located to an RFQ. Use of permanent magnets reduces the size. Achieved performance will be presented.
A direct comparison of Balmer line emission from J-PARC RF ion source (RFIS) plasma has been made between photometry measurement and 3D3V numerical analysis.The J-PARC RFIS has internal antenna coil for injection of a few 10 kW RF power with RF frequency of 2 MHz. Negative hydrogen ion ($\text{H}^-$) current of 45 mA is extracted with energy of 50 keV during the user operation in present. In...
MARS (Mixed Axial and Radial field System) is a new superconducting magnet underdevelopment with a novel coil layout for more efficiently generating high strength minimum-B fields for the next generation of Electron Cyclotron Resonance (ECR) ion source. It consists of a hexagonal closed-loop-coil and a set of auxiliary solenoids. A new quench protection system is needed for a MARS magnet to be...
Contemporary negative hydrogen (H$^-$) ion sources are operated with Cs ovens, and some part of the H$^-$ ion current extracted from the source is believed produced at the surface of the biased plasma electrode. The principle mechanism of the H$^-$ ion current production can be due to the reflection of atomic hydrogen, but this hypothesis has not been directly confirmed in the actual ion...
To improve the directivity of source plasma ions supplied to the extraction gap of a laser-ablation ion source (LAIS), the behavior of a laser-produced dense plasma flow modulated by a divergent magnetic field was investigated in detail. A magnetic field having a "nozzle-like" structure was induced by a pulsed solenoid near the laser target in synchronization with laser irradiation. The...
Fundamental data on surface reflection and adsorption/implantation are necessary for understanding edge plasma physics to design future fusion reactor components. A large divergent angle arising from low energy ion beam transport reduces signal intensity to make study on fundamental processes more difficult. A 40 mm diameter, 70 mm long compact ion source is being developed aiming at...
The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology, in order to demonstrate that a four-beam Interdigital-H type Radio Frequency Quadruple (IH-RFQ) linear...
A compact accelerator for high energy carbon-ion radiotherapy (C-ion RT) has been studied in Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS) since 2004. Compact accelerator for Gunma University (Gunma University heavy ion medical center: GHMC), Saga C-ion RT facility (Saga Heavy Ion Medical Accelerator in Tosu: SAGA HIMAT) and Kanagawa C-ion...
Charged muons as Muonium negative ions (consisting of positive Mu ¬ meson and 2 electrons) have affinity S=0.75 eV. Muonium have ionization energy I=13.6 eV. Muonium negative ions were observed in 1987 [1], [2] by interaction of muons with a foil. In this work an efficiency of transformation of Mu mesons to negative muonium ions were very low 10-4. However, with using tungsten or palladium...
A quartz-chamber 2.45 GHz ECR ion source was designed for diagnostic purpose at Peking University [Patent Number: ZL 201110026605.4]. It can produce a maximum of 84 mA hydrogen ion beam working at pulsed mode and the root-mean-square (RMS) emittance of this proton beam is smaller than 0.2 π∙mm∙mrad. In our primary work, electron temperature and electron density inside the plasma chamber have...
It has been investigated how to produce various ions efficiently on the electron cyclotron resonance ion source (ECRIS) in Osaka Univ. We attach the movable reflector, like bias plate, called plate-tuner, which is inserted from the mirror end plate opposite side to the extractor in the ECRIS. Standing waves are generated by placing the plate-tuner at nodes of the microwave and the microwave...
The installation of molybdenum liners in the ion source NIO1 (Negative Ion Optimization phase 1) has proven to be successful in order to largely decrease the contamination of rf window by wall sputtering; intense hydrogen plasma are thus achievable even at moderate rf power (1200 W) in a continuous regime operation (much longer than one hour), which enabled prolongated campaign at several...
The paper presents the results of experimental studies of the production of high intensity low ion energy repetitively pulsed beams of aluminum. The generation of metal plasma was conducted by a DC vacuum arc evaporator. The formation of ion beams was carried out using an original developed system combining plasma–immersion approach for extraction and acceleration of ions and their further...
We are presenting the simulation results of the hot tungsten filament behavior in a Freeman ions source installed in the LANL electro-magnetic isotope separator (EMIS). The Freeman source enables us to ionize and extract high intensity single-charge ion beams from different gases as well as from various solid materials in order to purify the content of a selected isotope [1].
We have modified...
The upcoming FAIR facility (Facility for Antiproton and Ion Research) will provide wide opportunities for investigation and research programs in different branches of science including antiproton physics, bio and material research, nuclear astrophysics and many others. A significant part of these programs require high intensity primary beams of heavy ions: $^{197}$Au, $^{208}$Pb, $^{209}$Bi...
At KVI-CART, an upgrade of the AECR ion source is in preparation, with the main objective to increase the intensity, stability and purity of the highly charged ion beams. To increase the intensity a new hexapole will be installed with stronger Nd-Fe-B magnets. To further increase the magnetization, the temperature of the hexapole bars will be lowered, making use of the temperature dependence...
The volumetric Kα emission rate emitted from the Electron Cyclotron Resonance (ECR) heated plasma of an ECR ion source (ECRIS) can be used to estimate the inner shell ionization rate of a gas species. Additionally, the thick target radiation originating from the walls of the plasma chamber can be used to estimate the energetic electron losses from the magnetic confinement system of the ECRIS....
We have tried to reveal a mechanism of laser ablation plasma generation through the developing Laser Ion Source (LIS) and confirmed that charge state distribution is forcefully affected by the laser target thickness. A LIS generates pulsed highly charged ion beams by irradiating solid material targets with high intensity pulsed laser. In the past, we examined the effect of laser target...
The 400 kV ion implanter in TIARA facility [1] provides variety of low charge DC ion beams of C, Al, Ti, Cu, Au, Pt, etc. mainly for material sciences. Most of beams are produced from solid materials by a Freeman type ion source equipped with sample vaporization oven. In the case of high melting point materials, the beam current is insufficient (below a few microamps) and decreases with time....
We are studying possibility to use sub nanosecond lasers to deliver low charge state ion beams from various target materials. Since 2014, a laser ion source (LIS) is in operation to provide singly charged heavy ion beams to user facilities at Brookhaven National Laboratory. For the LIS, 1064 nm, 6 ns single resonator ND-YAG lasers are used. It is required to operate the LIS for more than half...
The paper presents the results of experimental studies of the formation of high-intensity low ion energy pulsed beams of gases, gases and metals.The generation of gas plasma was conducted by a source based on non-self-sustained arc discharge with the hot cathode. In the case of mixed ion beams of gas and metal, the plasma formation was carried out by the source with the hot cathode and vacuum...
RAON fully superconducting ECRIS which plasma chamber volume of 10 liters is adapted and uses a 28 GHz MW power as a main power source and an 18 GHz MW power as a secondary power source. We characterized our ion source at a relatively low magnetic field just with an 18 GHz MW power. A reference O$^{7+}$ beam was monitored with the experimental parameters such as MW power, vacuum pressure, and...
Novel device based on the technology of Main Magnetic Focus Ions Source [1] has been developed recently at JINR. The electron beam characterized by the current of 50 mA and the energy exceeding 30 keV is focused by the magnetic system consisting of the radial permanent magnets. Highly charged ions are produced in the main focus of magnetic lens, where the electron current density exceeds 10...
MEDeGUN [1] is an electron gun to be used in an Electron Beam Ion Source (EBIS) designed to serve as C$^{6+}$ injector for LINAC-based 2nd generation hadron therapy facilities [2]. The latter require short pulses of at least 8 x 10$^8$ particles with a repetition rate of 400 Hz, which exceeds the possibilities of currently used electron cyclotron resonance ion sources (ECRIS) and EBISes.
The...
Multiple frequency heating is one of the most effective techniques to improve the performances of ECR ion sources. It has been demonstrated that the appearance of the periodic ion beam current oscillations in ECRIS at high heating power and low magnetic field gradient is associated with kinetic plasma instabilities. Recently it was proven that one of the main features of multiple frequency...
Elevation of ion charge states in broad beam of vacuum arc source leads to proportional increasing of ion beam energy without elevation of accelerating voltage. The ion charge states were elevated by using of high current vacuum arc with a few microsecond pulse duration. The heavy ion (bismuth) beam of several microseconds with pulsed ion beam current of several hundreds of milliamperes and...
Pulsed and CW operation of negative ion radio frequency surface plasma source (RF SPS) with a solenoidal magnetic field and external solenoidal and saddle type antennas are described. Dependence's of a beam current and extracted current on RF power, extraction voltage, solenoid and filter magnetic field, gas flow are presented. Compact design of RF SPS is presented.
Acknowledgement
The...
The difference in negative ion source performance between hydrogen and deuterium is investigated for three types of negative ion source design: charge exchange, surface and volume sources. The early results obtained at Ecole Polytechnique (France) with volume sources operated with and without Cs are reviewed to compare the characteristics of the source charged with deuterium to those of the...
X-ray imaging and numerical simulations demonstrate that the RF power deposition in ECRIS plasmas is not concentrated in the near-axis region, as it would be desirable in order to maximize the ion beam brilliance. There are different arguments to explain this occurrence as due to the symmetry of the plasma chamber. In this "aperture coupled" cylindrical cavity resonator, in fact, any eigenmode...
Huazhong University of Science and Technology (HUST) is developing an RF based negative ion source. Numerical simulation of the 1 MHz RF driver has been performed using a commercial high frequency FEM software. Differing from conventional inductively coupled plasma (ICP) source simulations, which exclude the effect of Faraday Screen (FS) and simplify the multi-turn helix RF antennas as...
The FAIR facility will require low duty cycle intense heavy ion beams which cannot be produced by the CAPRICE Electron Cyclotron Resonance Ion Source (ECRIS) installed at GSI. In order to fulfill this requirement an upgrade of the high charge state injector is mandatory. An experimental investigation at the ECRIS testbench was carried out with the aim to enhance the extracted ion currents in...
After the development in the 90’s of the mono-charged ion source [1] based on a axisymmetric magnetic structure, the next step towards multicharged ion source has been undertaken with the Multigan ion source [2]. The preliminary results did not fully demonstrate the ability of this source to produce high charge states. Therefore, GANIL and Pantechnik got both involved in a collaboration to...
This paper reports on experiments to study the effects of sinusoidal microwave power Amplitude Modulation (AM) on the performance of Electron Cyclotron Resonance (ECR) ion sources. The study was motivated by an inherent property of high frequency power sources such as gyrotrons, which exhibit amplitude modulation of the microwave power due to the use of high frequency switching power supplies...
The p(7Li,n)7Be reaction can be used to produce forward neutron beam based on the principle of inverse kinematics, which is useful to reduce the background of the measurement of prompt fission γ-ray emission from fast neutron induced fission of $^{235}$U and 238U. A hybrid $\text{7Li3}^+$ ion source is going to be adopted to produce 10 eμA beam for this experiment. Previously a high B...
For the production of high intensity $^{11}$C beams for image-accompanied hadron therapy, we present our proposal for a radioactive ion beam production system based on the ISOL technique (Isotope Separation On-line), operated with a compact 1+ electron cyclotron resonance ion source (ECR). Carbon therapy is a very precise treatment for cancers with localized tumors. However, such treatments...
In this paper measurements on the production of high intensity, medium charge-state Nickel-ion beams with high isotopic purity using the Metal Ion from Volatile Compound (MIVOC) Method are presented. Commercially supplied Nickelocene (Ni(C5H5)2) with natural abundance, Nickelocene with 99% enriched 60-Nickel and 98% enriched 62-Nickel were investigated with a 14.5 GHz ECRIS4. Mass over charge...
For development of a cesium-free negative ion source, we have carried out the experimental observation and modeling of negative ion, atomic and molecular ions in hydrogen sheet plasma. The sheet plasma is suitable to produce negative ions, because the electron temperature in the central region of the plasma is as high as 10 -15 eV, whereas in the periphery of the plasma, a low temperature of a...
Laser ablation of a solid oxide compound material makes the ion production of gaseous elements possible. Using an aluminum and alumina for the target in the laser ion source, the plasma characteristics in a low laser energy scheme was investigated to understand the difference in ion production of oxygen from the aluminum oxide material. The Faraday cup measurements of the laser produced plasma...
Nowadays one of widespread types of ion sources is systems with plasma heating by microwave radiation in a magnetic field under conditions of the electron cyclotron resonance (ECR). In a purpose to obtain high values of ion beam currents there is a need of high plasma density. Due to this fact one of the main directions of ECR ion sources development is to increase the frequency and power of...
There has been considerable research in proton beam production with laser-produced plasma, due to its important applications in various fields, such as cancer therapy and neutron source for radiography. While the feasibility of a laser ion source as the pre-injector of cancer therapy facilities in terms of the capability of the carbon ion beam production has been demonstrated in our previous...
Compact ECR plasma device was built in the Atomki ECR Laboratory called ECR Table Plasma Generator (TPG). It consists of a large plasma chamber (ID=10 cm, L=40 cm) and of a thin NdFeB hexapole magnet with vacuum and gas dosing systems. For microwave coupling low power TWTA is applied, operating in the 6-18 GHz frequency range. There is no axial magnetic trapping and there is no ion extraction....
To further increase the beam intensity of highly charged U ion beam for RIKEN radio-isotope (RI) beam factory project and to produce the intense beam of medium mass heavy ions, such as Ti, V and Cr ions, for super-heavy element ($Z = 119$ and 120) search experiments, we tried to improve the performance of the RIKEN 28 GHz SC-ECRIS in last two years.
In the test experiment, we successfully...
A positive ion source with RF discharge in solenoidal magnetic field is described. In this paper we present an overview of the positive ions production in saddle antenna (helicon discharge) radio frequency (SA RF) ion sources. An efficiency of H+ ion production in recently developed RF sources with solenoidal antennas was improved to 1.5-2 mA/kW. About 60 kW of RF power is typically needed...
Argon plasma behavior in a 2.45 GHz electron cyclotron resonance (ECR) plasma reactor is studied by means of a finite element software “COMSOL”. Using a multi-physics approach, we have simulated the magnetic field distribution, the microwave power deposition and the plasma properties such as potential, density, temperature etc. We report some results on investigation of the effects of various...
Since 2012, the INFN ion source group has been undertaking an intense activity on numerical modelling, started in a European context with the EMILIE Project, and presently continuing in the framework of the PANDORA project. The work mainly concerns the study of two aspects: on one hand, the interaction of an ion beam with a magnetized plasma, a topic of interest in the field of ECR-based...
A new type of ECR ion sources – a gasdynamic ECR ion source was invented recently at the Institute of Applied Physics (IAP RAS, Nizhniy Novgorod, Russia). The main advantages of such devices are extremely high ion beam current with a current density up to 600 – 700 $mA/cm^2$ in combination with low emittance i.e. normalized RMS emittance below 0.1 π•mm•mrad. The main part of previous...
The Accelerator Laboratory at the University of Jyväskylä (JYFL) has performed radiation effects testing of electronics since 1998 using a K130 cyclotron and cocktail beams produced with ECR ion sources (ECRIS). Currently most of the tests are done at 9.3 MeV/u energy which is achievable with the charge states produced by the 14 GHz ECRIS of the laboratory. The radiation effects community has...
Recent investigations of pulsed gasdynamic ECR plasma [1] resulted in development of a new type of electron cyclotron resonance ion source (ECRIS) – a so-called gasdynamic ECRIS - at the Institute of Applied Physics (IAP RAS). The main advantages of gasdynamic ECRIS are extremely high ion beam current in comparison with conventional classical ECRIS - current density up to 600 – 700...
The GTS-LHC ECR ion source at CERN provides heavy ion beams for the chain of the accelerators from Linac3 up to the LHC. For the lead runs the solid material is evaporated in internal ovens. The processes within these ovens are not well understood and experiences during the operation suggest there is room for improvement regarding the beam stability and the time between necessary refills.
A...
Heating the plasma of an Electron Cyclotron Resonance Ion Source (ECRIS) simultaneously with two microwave power sources operating at different frequencies has been proven to enhance the high charge state production in comparison to conventional single frequency heating. Despite the success of this technique, the underlying physics remains not well understood. A commonly applied scheme used...
Superconducting ECR ion source incorporated with the cutting edge techniques provides the ultimate conditions for highly charged ion beam production. In the last 12 years (since ICIS 2005 in Caen, France), ECR ion source performance has got remarkable improvement, most of the typical ion beam intensity records have been renewed almost every year, with the great efforts in superconducting ECR...
The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion beam for the linear accelerator at KBSI (Korea Basic Science Institute). In the last year, an ECR ion source was upgraded to improve performance. The extraction system was changed to prevent arcs which were generated between the negative electrode and ground...
The intensity of the ion beam extracted from an electron cyclotron resonance ion source (ECRIS) depends on the production rate of ions and the efficiency of the ion beam formation and transport. The production of Ar$^{9+}$ ions in an ECRIS plasma and the beam formation of the resulting Ar$^{9+}$ ion beam have been studied with the JYFL $14~\mathrm{GHz}$ ECRIS by using optical emission...
Earlier studies [1] on the frequency tuning effect in the 10 GHz NANOGAN ECR ion source have shown that larger intensities of medium and highly charged ions were extracted as compared to the source operation at 10 GHz and that the beam quality obtained was even better. In the present study we have tried to systematically correlate the x-ray intensities of the warm electrons measured at the...
The dual hollow cathode ion source for metal ion beams (Duhocamis) was introduced in 2007. The Duhocamis is derived from the indirectly-heated cathode GSI-PIG ion source and more suitable for producing various metal ion beams. To understand the discharge characteristics of Duhocamis, a series of arc discharge experiments have been performed on the test bench at Peking University. The transfer...
ECR ion source is considered to be the most efficient facility for generating highly charged ions beams, because of its board ion variety, high charge-state and beam stability, repeat-ability, etc. Compared with the intensive experiments, the study on theories and simulations of ECR ion source is more rare and immature due to its complicated physical phenomena and the huge computational cost....
Electromagnetic isotope separator is the important machine for isotope enriching of which ion source is the critical part. In China, the only one yielding-type electromagnetic isotope separator, named EMIS-170, locates in China Institute of Atomic Energy. It has been playing important role in providing highly enriched stable isotopes for many applications domestically, and the ion source used...
The high-energy ion nanoprobe LIPSION* of the Universität Leipzig consists of a 3 MV singletron accelerator in combination with an ion nanoprobe which presently focusses protons and helium ions to diameters in the sub-100 nm range.
The currently used RF ion source in the accelerator dominantly produces single-charged ions of a mass range of hydrogen up to xenon. Their ionic charge state 1 (at...
Super-heavy-element factory is under development at the Flerov Laboratory for Nuclear Reactions, JINR, Dubna. The factory will include DC-280 cyclotron, which will be equipped with two 100 kV high voltage platforms. A high charge state all-permanent magnet 14 GHz ECRIS – DECRIS-PM has been designed and fabricated to provide intense multiple charge state ion beams. The request for the source is...
Models for surface interactions and emission in ion sources may be based on surface measurements taken with quite different nearby field strengths, particle spectra, charge densities, and connected to power supplies with different VI characteristics, or even different material composition to those in the device being simulated. Particularly, standard models available in many codes do not take...
The extraction of negative ions from a plasma is necessarily accompanied by electrons, which are controlled with a transverse magnetic field. A full numerical analysis of the 3D model is hindered by the computational load and by the rapidly growing electric field towards extraction, so that we pass from quasi-neutral plasma with collisional transport to collision-less sheath to beam region.
It...
The GTS (Grenoble Test Source) electron cyclotron resonance ion source, operated at 14.5 GHz, provides multiply charged heavy ion beams for the ARIBE (Accélérateurs pour les Recherches Interdisciplinaires avec les Ions de Basse Energie) facility at GANIL (Grand Accélérateur National d’Ions Lourds). In order to increase the beam currents and charge states available for experiments and to have a...
Neutron tomography is one of the most exciting recent achievements of nuclear physics. It opens up opportunities for a wide range of various microscopic studies of physical, chemical and biological objects. It is of note that neutron tomography requires dedicated neutron sources, i.e. paraxial sources with low angle spread. The only sources now able to deliver required neutron beams with...
Fundamental data are indispensable to set up a numerical simulation model to predict the amount of current extracted from an ion source. Surface recombination process plays a decisive role for determining the proton ratio in hydrogen plasma ion species, and the data on recombination coefficients have been accumulated for elements used for ion source wall materials [1]. The surface conditions...
Tiny amounts of caesium (Cs) injection into negative ion sources enhances the density of hydrogen/deuterium negative ions (H$^-$/ D$^-$ ions) drastically. Sequential processes through the production to extraction of negative ion is essential to understand the negative-ion dynamics from physics point of view and to improve the performance of negative ion source from engineering point of view. ...
Low temperature hydrogen plasmas of positive (H$^{+}$, H$^{2+}$, D$^{+}$) and negative (H$^{-}$, D$^{-}$) ion sources are strong sources of vacuum ultraviolet (VUV) radiation. Theoretical calculations based on fundamental conservation laws and reaction cross sections show that at least $10$ % of the applied plasma heating power is dissipated via photon emission. The theoretical result is...
A versatile platform for basic researches LEAF or Low Energy Accelerator Facility has been launched at IMP. In order to meet the beam intensity requirements of highly charged heavy ions, a 45 GHz superconducting ECR ion source FECR (a Fourth generation ECR ion source) is under intense R&D at IMP. Therefore, we introduced a 45 GHz gyrotron system which is capable of providing output power up to...
Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. One main feature of PIC codes is that they resolve the Debye length, i.e. they can calculate the transition between the quasi-neutral plasma and...
High-voltage negative-ion based injector is under development at Budker Institute of Nuclear Physics. Its essential feature is beam transport from the multiaperture source to a single-aperture accelerating tube through a low energy beam transport line (LEBT). This scheme permits to purify the beam from the co-streaming fluxes of fast hydrogen atoms, gas molecules, cesium vapor. As a result,...
We report on the characteristics of the beam-generated plasma in the multibeamlet case of a large hydrogen negative ion (H$^-$) beam at NIFS. The plasma potential, and the energy of secondary particles in the drift region of an ion beam, offer an insight into the mechanisms that allow beam transport in low pressure gasses.
The first measurements reported here were made by means of a...
Deuterium beam operation on neutral beam injectors (NBI) have been carried out successfully in the Large Helical Device (LHD) in 2017. We had operated three hydrogen negative-ion and two positive-ion based NBI’s since 1998 and 2005, respectively. In 2017, the injection beam power has reached 31 MW used five beam lines, which gave us a new operation region for high ion temperature plasma....
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the CAlifornium Rare Ion Breeder Upgrade (CARIBU). For the past year, the EBIS has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q < 6, breeding times < 30 ms, low background contamination, and...
The classic sheath model for unmagnetized positive ion extraction codes was developed in the seventies. It assumes that the extracted ions originate from a positive plasma potential and experience a monotonic acceleration through the plasma sheath towards the extraction at negative potential. The model assumes that the compensating electron density can be stated as an analytic function of the...
The ITER Neutral Beam Injection (NBI) relies on sources of negative hydrogen and deuterium ions which deliver a homogeneous and temporally stable extracted negative hydrogen ion beam for up to one hour (57 A extracted D$^–$ current from an extraction area of 2000 cm$^2$), at which the co-extracted electron current has to be lower than the extracted negative ion current. The large ELISE...
The Neutral Beam (NB) system for ITER will deliver an ion beam with energy of 1 MeV and current of 40 A. Only NB systems based on negative ions can attain the neutralization efficiency required for the NB system in ITER. Helicon plasmas are a promising candidate for the production of negative ions. The RAID (Resonant Antenna Ion Device) at the Swiss Plasma Center represents a crucial step in...
A project to produce RIB in a reactor has been proposed in China Institute of Atomic Energy, China. A target-ion source with about 5g $^{235}$U will be installed in one of the reactor neutron ducts with inner diameter 170 mm. To verify the feasibility of RIB production, an off-line prototype target-ion source has been designed and fabricated. The design details will be described.
The magnetic filter is an outmost important part of a $\text{H}^-$ plasma ion source since it must reduce electron transport, density, and temperature, apparently with no clear physical indication of a saturation criteria. In the early 2016 configuration of NIO1 (Negative Ion Optimization phase 1), an average of B$_x$=30 G dipole field was obtained in the extraction region with a current...
Negative ion sources are a key component of neutral beam Injection systems, which are used in fusion experiments to raise the plasma parameters close to start ignition. A novel concept for a negative ion source based on existing well tested Hall thrusters (HT) is presented. The thruster scheme is modified in order to maximize the hydrogen dissociation so as to produce an atom flux at an energy...
The Experimental Fusion Reactor ITER will use fast Neutral Beam (NB) injectors to increase the plasma temperature in order to drive the plasma current necessary for stability. The NB are produced by a $\text{D}^-$ beam generated by a negative ion source which is neutralized by a gas cell with an efficiency of 60%. In order to improve the electrical efficiency of the NB production, a beam...
Beam optics is a key requirement in multi-stage multi-beamlet negative ion accelerator for fusion applications, such as the high power Heating Neutral Beam injectors for ITER and JT-60SA. In particular, the efficiency of beam neutralization and transport to the tokamak plasma to be heated is crucially dependent on the divergence and deflection angle of the single beamlets with respect to their...
The 1+/n+ method, early developed at the LPSC laboratory, is implemented at GANIL for the production of radioactive ion beams as well as for studying the production of intense stable metallic beams.
Regarding radioactive ion beam production, the SPIRAL1 charge breeder has been installed in the midst of the SPIRAL1 LEBT. Many modifications of the beam line and the ancillaries have been done to...
Considered the lack of research on the negative ion source for NBI application in China, the Hefei utility negative ions test equipment with RF source has been developed at ASIPP. It will work as a satellite for CFETR Neutral Beam Test Facility. The rf power of negative ion source is up to 50 kW. The size of the plasma chamber is 65 cm(L) ×26 cm(W) × 19 cm(H). An enhanced filter field was...
One of the indexes of ion source performances is a ratio of beam current to discharge power (discharge power efficiency). In some cases, one ion source is utilized for several kinds of ion beams depending on the application. The discharge power efficiency can change by ion species. In particular, hydrogen and deuterium ion beams are utilized in the ion source of a Neutral Beam Injector (NBI)...
Typically, measure of the current distribution (or current density) at the target surface can be performed by using different probes, or Faraday cups, or systems of the rotating disk collector, or systems of scintillation plates and the secondary electron multipliers. However, in those cases, the target and the measuring system should be located under a ground potential. Thus, such measurement...
Among the tokamaks in the world, DAMAVAND is one of the small ones and, regarding the features of its plasma, offers useful and important research fields among which the plasma heating injector design is one of the most conspicuous ones. The heart of any neutral beam injector is the ion source in which ions are produced for the first time. In this paper, conceptual design of an ion source for...
A RF H$^{-}$ source with external antenna is under construction for China Spallation Neutron Source (CSNS) project Phase-II, which requires a H$^{-}$ beam of 40 mA peak current, 25 Hz repetition rate, and 1 ms pulse length. The plasma chamber is made of Si$_3$N$_4$ ceramic to endure high thermal shock. The water-cooled antenna is brazed on the outer wall of the plasma chamber to enhance heat...
To bridge the gap between ITER and fusion demonstration reactor (DEMO) and to realize the fusion power in China, a new fusion facility named the China Fusion Engineering Test Reactor (CFETR) is under conceptual design. Neutral beam injection (NBI) is one of the proposed auxiliary heating system to bring the CFETR plasma to the ignition temperature. A steady-state neutral beam with the power...
Intensification of negative fullerene (C60) ion beam current from an ion source is indispensable for research and developments using a MeV energy C60 ion beam with a tandem accelerator. Generally, a cesium sputtering type ion source has been used to generate a negative C60 ion beam. An average current of the negative C60 ion beam is about 50 pA, and...
The Gothenburg ANion Detector for Affinity measurements by Laser PHoto-detachment (GANDALPH) has recently been built to determine the electron affinity (EA) of radioisotopes by laser photodetachment spectroscopy. As a proof-of-principle, the EA of the 128-iodine negative ion, produced at the CERN-ISOLDE radioactive ion beam facility, was measured with GANDALPH – representing the first ever...
This study relates to the negative ion source for Neutral Beam Injection (N-NBI [1]). Production of negative ions plays an essential role in N-NBI. A negative ion beam with an energy of 1 MeV and a current of 40 A (a negative ion current density of 20 mA/cm$^{2}$) is required for 3600 s to produce 16.5 MW of power. Conventional negative ion sources require cesium seeding to obtain high...
Calibration of energy channels and control of stripping foil quality in neutral particle analyzers designed for international tokamak reactor ITER will be carried out using a specialized source of helium ions. The ion beam should have a uniform current density in entrance aperture of the analyzer with a diameter of 2 cm. The total intensity of the beam entering the analyzer should be adjusted...
The combined system of Charge Exchange Spectroscopy (CES) and Beam Emission Spectroscopy (BES) will be developed in Versatile Experimental Spherical Torus (VEST) to measure ion temperature and rotation velocity by not using impurity but main hydrogen ion emission line directly. Diagnostic Neutral Beam (DNB) system is needed to supply high energy neutral particles for charge exchange reaction...
A new linear accelerator Linac4 is under development at CERN as a part of the upgrade of their accelerator chain. A radio frequency (RF) driven type negative hydrogen (H$^{-}$) source is used as an injector of Linac4. The Linac4 H$^{-}$ source must deliver 40-50mA, 45 keV H$^{-}$ beam. The power transfer efficiency between the RF generator and the ion source plasma is one of the important...
Several diagnostic studies are planned for the H$^{-}$ Ion source at LANSCE. Studies related to the tungsten filament quality and lifetime, cesium saturation of the converter, and of the plasma in the ion source. Diagnostics will be done using thermal imaging and laser spectroscopy. These studies will help improve the quality performance of the H$^{-}$ ion source at LANSCE.
The magnetic filter is essential in all current negative ion sources for neutral beam injectors. The negative ions produced are easily destroyed by collisions with fast electrons (>2 eV). While the fast electrons are necessary to produce the plasma (e, H+, H2+, H3+, H) through ionizing collisions with the gas. To resolve this conflict, the magnetic filter is applied to form a negative ion...
The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics, as well as innovative solutions for electrical efficiency, in view of their use as sources of neutral beam injectors (NBIs) in future fusion experiments, like MITICA, the ITER NBI prototype.
NIO1 has been designed to produce 9 H$^{-}$ beamlets (in a 3x3...
The plasma discharge power acts as a control parameter for the plasma density, and the beam optics can be optimized by properly controlling it. In negative ion sources for fusion, a plasma grid (PG) is positively biased with respect to an ion source chamber in order to control the ratio of negative ions to electrons in the extracted beam. In our recent studies, it was confirmed that the...
Recently the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder was commissioned at the ATLAS accelerator facility. Different EBIS trap configurations were used in order to investigate the effects on the extracted beam. Extracted beam intensities, timing, and energy spread were measured using a fast-counting ionization chamber. Results of the...
The Electron Beam Ion Source (RHICEBIS) provides various types of ions with the Relativistic Heavy Ion Collider and the NASA Space Radiation Laboratory at Brookhaven National Laboratory. RHICEBIS will be extended in length to provide a factor of 1.4 increase in the extracted Au$^{32+}$ ion beam as well as internal gas injection capability for light ions. Two unshielded 5T superconducting...
Currently few doubt that a common approach with a gas target for a negative ion beam neutralization in large NB-heating systems is not enough promising. Photon neutralization is considered as main alternative to gas target for injection efficiency enhancement. Significant power density of photons in steady state is needed for this purpose. This requires certain radiation storage. Generally,...
The radio frequency (RF) ion source has the potential of steady-state operation which due to it has no filament. Compares to the traditional arc based ion source, the RF power should couples into the plasma through the matching network. So, the matching network is much important for the RF ion source. Due to the plasma impedance will be changed before and after the plasma generation, the...
Cybele machine which is directed to development of the future NBI system SIPHORE for the reactor DEMO [1] is assembled and operated at the IRFM in CEA Cadarache. The main purpose is to create a tall and narrow (blade-like) negative ion beam (H$^{-}$, D$^{-}$), for further neutralisation by laser photodetachment. The source has a high aspect ratio ($1.2\,$m $\times$ $0.15\,$m), which is...
A global model is applied to investigate the complex chemistry in a negative hydrogen ion source with caesiated plasma grid. This global model includes electrons, neutral hydrogen molecules with all vibrational states ($\text{H}_2 (v)$), hydrogen atoms in the first 3 electronic states $(\text{H}(n))$, and ground state ions $(\text{H}^+$ , $\text{H}_2^+$ , $\text{H}_3^+$ and $\text{H}^-)$. It...
Reliable and stable operation of a hydrogen negative ion source to produce 500 keV, 22 A for 100 s is required for a neutral beam injector (NBI) for plasma heating and current drive of JT-60 Super Advanced (JT-60SA). The chamber to produce the negative ions is a semi-cylindrical multi-cusp source, so-called KAMABOKO source. Though 100 s long pulse operation was already performed, many...
D-Pace's new 13.56 MHz RF powered H$^−$ ion source, a hybrid design between the TRIUMF licensed filament powered ion source [1] and the University of Jyväskylä licensed RF ion source [2], has been shown to be less efficient than the filament powered ion source, even though both sources use the same body and extraction system [3]. The difference is thought to be due to RF power losses to the...
In Brookhaven National Laboratory (BNL), a collider experiment having same mass number and different charge number atoms is planned at RHIC (Relativistic Heavy Ion Collider). Specifically, it is planned to investigate the influence due to the difference in charge number by comparing $^{96}$Zr atoms and $^{96}$Ru atoms and one of the isobars, $^{96}$Zr beam will be provided by the laser ion...
Despite the manifold new developments introduced to ISOL (Isotope Separation Online) target units within the last 60 years, the beam extraction of elements with very high boiling points (refractory elements) remains a very challenging topic. Due to their vanishingly low volatility, radionuclides of these elements generated by the driver beam are captured within the target and suffer from...
DEMO will be the first fusion plant to produce electricity and has to demonstrate the capability of fusion technology to be used in a power plant environment. Reliability and high wall-plug efficiency are the key requirements for any system to be used on DEMO. In case of neutral beam injection (NBI) – one of the heating and current drive systems currently under discussion for DEMO – upgrades...
In view of the future experiments on the large ion sources used for the neutral beam injection system of ITER and DEMO reactor, a small scale negative ions source called NIO1 (Negative Ion Optimization, phase 1) is operated at Consorzio RFX since 2014 [1], [2]. At this stage H$^{-}$ are mainly formed by volume processes, while the use of cesium vapour to enhance the surface production is...
The Resonance Ionization Laser Ion Source (RILIS) is the most extensively used ion-source at the CERN-ISOLDE on-line radioactive ion beam facility. It provides not only high efficiencies but also offers element and, in some cases even isomer selective ionization. The ionization method itself, based on stepwise resonance excitation and ionization of atoms using tunable lasers, offers the...
An 8 mA CW surface-plasma negative hydrogen ion source [1] has been routinely used during last decade for proton beam production at 2 MeV vacuum insulation tandem accelerator at the Budker Institute of Nuclear Physics. Continuous 4–6 hours dc runs of the source were regularly produced, and proton beam with current > 5 mA was accelerated [2].
The source uses the hydrogen-cesium Penning...
Negative ion sources are used in a variety of research fields and applications such as in tandem type electrostatic accelerators, cyclotrons, storage rings in synchrotrons, nuclear and particle physics and in magnetic fusion devices. In magnetic fusion applications, negative ion sources are a subset of a Neutral Beam Injector (NBI) producing high power neutral beams which are injected into the...
Detector R&D projects in particle physics and experiments in radio-biology require often very low intensity, stable beams with well controlled flux. Usual method to decrease beam intensity by collimators is usually not suitable since background radiation has to be kept as low as possible. This paper describes internal cyclotron Penning ion source (PIG) modification which allowed to...
C-2U Field-Reversed Configuration (FRC) experiment proved substantial reduction in turbulence-driven losses via tangential neutral beam injection (NBI) coupled with electrically biased plasma guns at the plasma ends.[1, 2] Highly reproducible FRCs with a significant fast-ion population [3] and total plasma temperature of ~ 1 keV were produced and sustained for times significantly longer (more...
Radio Frequency (RF) Inductively Coupled Plasmas (ICPs) have been utilized in the wide variety of fields, e.g., material processing [1], accelerator [2], fusion [3]. Although such RF-ICPs play important roles in their fields, the operation of the RF-ICPs is difficult to control because of the complexity of their discharge process. In the previous work, an ElectroMagnetic Particle in Cell Monte...
In order to clarify the physics of the H$^{-}$ ion extraction and beam optics such as the beam halo formation, and contribute to the design of a negative ion source, the integrated model of negative ion beam from plasma meniscus formation to the beam acceleration is developed by using the 3D3V PIC (three dimensions in real space and three dimensions in velocity space particle in cell) model...
The ITER project requires additional heating provided by two injectors of neutral beams (NB) resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER (Source for Production of Ions of Deuterium Extracted from an Rf plasma) test facility is now in the assembly phase in Padova, with the aim of testing beam characteristics,...
Multi cusp DC arc-discharge hydrogen negative ion ($\mathrm{H}^-$) source has been developed for proton cyclotron, which is used for Boron Neutron Capture Therapy (BNCT) [1, 2]. In order to shorten the treatment time for BNCT, it is required to get high extracted beam current from the source.
$\,\,\,\,\,\,\,\,\,\,\,\,$The final goal of this study is to understand the dependency of the...
Cs-enhanced, RF-driven (internal or external antenna) H$^-$ ion sources are used to produce high current (>60 mA), high duty-factor (1 ms, 60 Hz) H$^-$ beams for the accelerators at the Spallation Neutron Source (SNS) facility. A solid reaction Cs dispenser system placed near the ion source outlet, the Cs collar embedded with cartridges containing a mixture of Cs chromate and St101 getter...
Each beam line of the ITER Neutral Beam Injection (NBI) system is designed to deliver 16.5 MW into the plasma, thus providing heating and current drive by means of 40 A of negative ion current accelerated up to 1 MeV for 1 hour. Strict requirements are foreseen for these negative hydrogen ion sources: high extracted current density (33 mA/cm$^2$ for H$^−$ and 28.6 mA/cm$^2$ for D$^−$), very...
Electronic ground state hydrogen molecules at high vibrational states, $\mathrm{H}_{2}(\mathrm{X}^{1}\Sigma_{g}^{+},\nu \geq 5)$, have large cross sections for dissociative electron attachment, $\mathrm{H}_{2}(X^{1}\Sigma_{g}^{+},\nu)+\mathrm{e} \rightarrow \mathrm{H}_{2}^{-}(^{2}\Sigma_{g}^{+})\rightarrow \mathrm{H}^{-}+\mathrm{H}$, at low electron energies.
Thus, their production through...
The Neutral Beam Injection (NBI) heating system of ITER is a key stage for the yield of the full tokamak machine. The performance of the NBI system in turn strongly depends on the yield of the first component of the system, the negative ion source of $\text{D}^-$ (or $\text{H}^-$) ions.
The plasma is inductively created, by means of a RF discharge in the deuterium or hydrogen gas, in the...
A new microwave driven Cs-free H$^{-}$ ion source was designed at Peking University for the mechanism research of H$^{-}$ source. To understand the influence of liner material to the performance of this ion source, a series of experiments with different materials of liners of Ta, Au, Be, Al, Cu have been carried out recently. In our experiment, H$^{-}$ beam was extracted with negative voltage...
An ion source called NIO1 (Negative Ion Optimization, phase 1) has been developed by Consorzio RFX and INFN-LNL and is currently in operation in the Consorzio RFX premises in Padova. NIO1 has a radio frequency (RF) inductively coupled (IC) ion source designed to produce a total of 130 mA $\text{H}^-$ current and to accelerate the ions up to energy of 60 keV; it operates at a frequency of 2 ±...
Operation of a cesiated rf-driven negative hydrogen ion source was initiated in September 2014 in response to the requirements of beam current upgrade in J-PARC linac. Delivery of the required beam current from the ion source to the J-PARC accelerators has been successfully performed. In 2016-2017 campaign, continuous operation of the ion source for approximately 1450 hours (from January to...
The 2018 heavy ion experimental program for the Relativistic Heavy Ion Collider (RHIC) requires the collisions of Ruthenium-96 (Ru-96) ions. The production of Ru-96 ions is challenging due to the low abundance of the 96 isotope in natural Ruthenium (5.52%) and the small quantity of isotopically enriched material available. To best meet the needs of the experimental program, the BNL Tandem Van...
The radio frequency (RF) ion source has many merits compared to the traditional arc based ion source because of it has long lifetime due to no filaments. It has the potential to be operated in steady-state. In order to meet future development needs of neutral beam injectors, a radio frequency ion source was designed and developed in Institute of Plasma Physics, Chinese Academy of Sciences...
The LPSC ion sources team develops the Phoenix Charge Breeder since 2000. The performances have been improved over time acting on the 1$^{+}$ and N$^{+}$ beam optics, the base vacuum and the 1$^{+}$ beam injection. A new objective is to increase significantly the plasma chamber volume to improve the plasma confinement, enhance the higher charge state production and the 1$^{+}$,...
Models of the hot cathode performance and thermal arc discharge were used to estimate main plasma parameters and the sputtering rate of tungsten atoms. The hot filaments in H- surface converter ion source suffer from non-uniform mass loss that limits its operational lifetime. The dominant mass loss mechanisms used in the new filament model are: the thermal evaporation and plasma sputtering...
In July 2017 SNS will resume 1.2 MW proton beam operations to produce world record beams for neutron scattering experiments. This is enabled by the excellent performance of the SNS H$^-$ ion source and the compact electrostatic LEBT that inject up to 60 mA into the RFQ. To reduce inefficiencies and downtime the source service cycle periods have been increased and up to 96 days have been...
Rare Elements in-Gas Laser Ion Source and Spectroscopy at S3 (REGLIS3) is the new set-up currently under construction at the SPIRAL2/GANIL facility for the production of high-intensity radioactive ion beams, preselected by the Super Separator Spectrometer (S3). REGLIS3 will be a source for the production of low-energy, high-purity isotopic and isomeric ion beams and at the same time a tool for...
Resonance ionization laser ion source has become an essential tool for the production of isobarically pure radioactive ion beams for nuclear research [1]. Efficient resonant ionization of beams of atomic tellurium using a combination of Ti:Sapphire and dye lasers has been recently reported [2]. Development of suitable ionization schemes is important for the laser ion sources equipped with all...
Negative ion transport from metal surface to meniscus of plasma grid in negative ion source with cesium seeding is useful to design high performance ion sources and has been reported in previous works, most of which are simulation studies. Some of experimental studies estimated the main transport route of negative ion by comparing ion beam currents with the several shapes of negative-ion...
Charge-breeding processes in Electron Cyclotron Resonance Ion Sources are numerically simulated by using the target helium plasma parameters obtained with NAM-ECRIS code. Breeding efficiency is obtained as a function of 1$^{+}$ ion injection energy for some alkali ion beams.Time dependencies of extracted ions are calculated; typical times for reaching saturation in currents are in the range of...
The MARA low-energy branch (MARA-LEB) is currently under development at the Univ. of Jyväskylä. The facility will be focused on the study of ground-state properties of exotic proton-rich nuclei employing in-gas-cell and in-gas-jet resonance ionisation spectroscopy, and will provide mass measurements of nuclei at the N=Z line of particular interest to the astrophysical rp process.
MARA-LEB...
A beam line with 4 MW beam power and 80 keV beam energy was designed and developed on the Experimental Advanced Superconducting Tokamak (EAST). A hot cathode high power ion source was employed for a neutral beam injector (NBI) on EAST. The ion source contains a hot cathode plasma generator and a tetrode accelerator. The beam cross section is 10 cm × 48 cm which depends on the beam injection...
One of the main concerns when working with negative ion sources is beam collimation during propagation. All the particles that make up the beam have the same electric charge, therefore they tend to repel each other: this causes the beam to widen after being accelerated. In environments where the beam needs to travel long distances before reaching its target, the compensation of its space...
The goal of the CANREB (CANadian Rare isotope facility with Electron Beam ion source) project at TRIUMF is to deliver pure highly charged radioactive ion beams suitable for acceleration and performing experiments to investigate nuclear reactions. Radioactive isotopes at an ISOL facility like ISAC and ARIEL at TRIUMF are produced by bombarding solid targets with high energy particle beams....
Experimental observation of plasma instabilities in 14.5 GHz PHOENIX charge breeder ECRIS is reported. It is demonstrated with $^{133}$Cs and $^{85}$Rb that the injection of the 1+ ion beam into oxygen ($^{16}$O) discharge of the CB-ECRIS can trigger electron cyclotron instabilities, which restricts the parameter space available for the optimization of the charge breeding efficiency. It is...
Spatial non-uniformity of the surface produced negative ions ($\mathrm{H}^-$) has been one of the causes of non-uniform beam and the resultant short pulse duration time and insufficient power for QST’s (former JAEA) JT-60SA Negative Ion Source (NIS) [1]. Since the asymmetric feature of the high-energy electrons causes the spatial non-uniformity of the $\mathrm{H}^-$ on the Plasma Grid (PG)...
Beijing Radioactive Ion-beam Facility (BRIF) at China Institute of Atom Energy (CIAE) utilizes the high intensity proton beam extracted from a 100 MeV cyclotron to produce the radioactive ion beams (RIB) by the isotope separation on-line method. A positive surface ionization source has been developed to produce the first radioactive ion beam. The modulation design was under development to...
CSNS ion source, similar to ISIS ion source is a type of penning surface plasma ion source, which can produce 50 mA H$^{-}$ beam. The commissioning of CSNS front end including ion, LEBT and RFQ has been finished. Above 15 mA H$^{-}$ beam is obtained at the exit of RFQ, which meets the requirement of CSNS phase I. However, the improvement of both, beam performance and operation stability, is...
Today ion sources based on laser resonance ionization are well-established core techniques at the worldwide leading radioactive ion beam facilities such as CERN-ISOLDE or ISAC-TRIUMF. Ensuring both, highly efficient and element-selective ion beam production to the users, these devices in addition allow for direct laser spectroscopic investigations on exotic nuclei far off stability with lowest...
A singly charged ion delivery system has been designed and constructed for the purpose of charged ion injection into the Electron String Ion Source (ESIS) at JINR, Dubna, Russia. [1], [2]. A Liquid Metal Ion Source (LMIS) is used to produce Ga$^{+}$ and Au$^{+}$ ions which are transported through a beam-line system consisting of charged particle optics [3]: Focusing Einzel-lenses, an...
The ITER baseline foresees 2 Heating and Current Drive Neutral Beam Injectors, HNB’s, operating at 1 MeV 40 A D$^0$, each capable of delivering 16.5 MW of deuterium ions to the plasma, with a 3rd HNB injector foreseen as an upgrade option that would bring up the total neutral beam power to 50MW [1]. In addition a dedicated Diagnostic Neutral Beam Injector, DNB, will be injecting a modulated...
The upgraded version of the neutral beam injector is described, which provide 1.7 MW power and 15 keV atom energy in injected beam. The nominal extracted proton beam current is 150 A, while the ion source provide the maximal current up to 180 A. The beam duration increased to 30 ms after upgrade in comparison with 8 ms for previous version [1]. The multy-slit 3-grid ion-optical system...
Sources for negative hydrogen ions for accelerator front-ends or neutral beam injection systems of fusion experiments use the surface conversion mechanism to convert hydrogen atoms and positive ions from a low temperature hydrogen plasma to negative ions. The efficiency of the underlying conversion mechanism is dominantly determined by the work function of the surface, which is the reason for...
The potential of high intensity laser acceleration with petawatt PW-class laser systems such as the BELLA laser at LBNL are reviewed. Several mechanisms will be discussed as well as limits to the maximum ion energies, required targetry and diagnostics in order to utilize the capabilities of PW laser operation (and ion beam generation). Further, transport of such ion beams to an EMP-free...
Superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straightforward path to achieve high beam intensity and high charge state in the past years. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three...
The experimental and theoretical research carried out in the past at the Institute of Applied Physics (IAP RAS) resulted in development of a new type of electron cyclotron resonance ion source (ECRIS) – the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s classical ECRIS confinement i.e. the quasi-gasdynamic one similar...
Laser energy absorption is being studied by measuring reflected laser beam in Brookhaven National Laboratory. To provide highly charged heavy ion beams using laser ion source (LIS), efficient laser energy absorption to the plasma is important. In the plasma heating stage, laser beam penetrates outer layer of induced plasma. When the laser beam reaches a cutoff electron density of the plasma,...
Invited Talk
The National Institutes for Quantum and Radiological Science and Technology (QST) was established in April 2016 based on the merger of several institutes, the National Institute of Radiological Sciences (NIRS), and Takasaki Advanced Radiation Research Institute, Kansai Photon Science Institute, Naka Fusion Institute, Rokkasho Fusion institute formerly affiliated to the Japan Atomic Energy...
The development of the Versatile Arc Discharge and Laser Ion Source (VADLIS) has been crucial to the success of several experiments at ISOLDE, CERN's radioactive ion beam facility, since it was used online for the first time in 2015 [1]. The VADLIS is a result of the combination of the Resonance Ionization Laser Ion Source (RILIS), used for 25 years at ISOL facilities to achieve element and...
The vacuum arc ion source VARIS, based on the MEVVA IV (MEtal Vapor Vacuum Arc) ion source, has been developed at GSI in 2004 especially for production of high current $^{238}$U$^{4+}$ ion beams for synchrotron operation. Compared to the MEVVA IV ion source the VARIS has a number of improved characteristics: higher emission current density, better vacuum conditions, better pulse-to-pulse...
The Irfu/SACM at Saclay is in charge of developing and building the ion source and the low energy line or the proton linac of the FAIR accelerator complex (Facility for Antiproton and Ion Research) located at GSI (Darmstadt) in Germany. The FAIR Facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic...
As the main H$^{-}$ ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970’s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of H$^{-}$ ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams...
Emittance of multiply-charged heavy ion beam extracted from ECR ion source should be matched with the acceptance of the following low energy beam transport (LEBT) and accelerator in order to improve transport efficiency. The more beam brightness increases, the more important space-charge effect is because it induces the spatial aberration of beam optics components, e.g. dipole magnets and...
There are some needs of proton beam of several MeV in energy for the purpose of calibrating charged particle detectors. For that purpose, electrostatic accelerators are usually appropriated, but recently many electrostatic accelerator facilities have been shut down. On the other hand, cyclotrons are too large to use for such calibration. So, a proton generating system which consists of 18 GHz...
The Heavy Elements Laser Ionization and Spectroscopy (HELIOS) project at KU Leuven has the goal of performing In-Gas Laser Ionization and Spectroscopy (IGLIS) measurements on the actinide and superheavy (transfermium) elements. These studies will allow to deduce atomic properties, e.g. ionization potentials, electronic transition energies and strengths, isotope shifts, nuclear charge radii,...
We have been developing a compact ion accelerator system for evaluating potential health risks of radiation exposure against ion beams. In order to realize the compact ion accelerator, we adopted a dielectric wall accelerator (DWA) concept for beam acceleration. The DWA system uses photoconductive semiconductor switch (PCSS) driven high voltage transmission lines to generate pulsed electric...
The report presents experimental research results on a pulsed vacuum arc ion source with heated elemental boron cathode. Boron is a semiconductor having a high specific resistance (~1.8 MOhm×cm) under normal conditions and is difficult to sputter and to evaporate. Therefore in the known ion sources, the initiation of an arc discharge with a pure boron cathode requires preliminary heating-up of...
Reducing the size, weight and power (SWAP) of ion accelerators is one of the driving forces in developing new accelerators for applications in research and industry. We recently demonstrated a novel multi-beamlet ion accelerator [1] formed from stacks of wafers (PC board in the first demonstrations) and fabricated using microfabrication approaches. The concept of this...
The crossed electric and magnetic fields configuration inherent to the electrostatic plasma -optical lens (PL) provides a suitable method for establishing a stable gas discharge at the low pressure. Using PL configuration in this way a number of cost-effective and high reliability plasma devices using permanent magnets were devised. These kinds of devices are part of a large class of...
In NRC «Kurchatov institute»-ITEP the research of the material radiation resistance by accelerated metal ion beams is under progress on RFQ linac Heavy Ion Prototype (HIPr). One of the ongoing material science projects aims at the analysis of the radiation resistance of tungsten that will be used in future fusion facilities like DEMO and ITER. To provide irradiation experiments, MEVVA ion...
Linac4 cesiated surface negative ion source is required to produce 50 mA of H$^-$ ions within a transverse rms emittance of 0.25π mm∙mrad [1,2]. In order to achieve the requirements, it is necessary to optimize the H$^-$ beam extraction from the Linac4 negative ion source. Recently, the extraction region of the Linac4 ion source has been modeled by three- Dimensional Particle in Cell (3D-PIC)...
The superconducting magnet for RAON 28 GHz ECR ion source has been designed. The designed magnetic field distributions for the 28 GHz ECR ion source were 3.5 T at the injection side, 2 T at the extraction side and 2 T on the inner surface of the plasma chamber, respectively. The magnets using NbTi wires were composed of the four solenoid magnets for axial magnetic field and one saddle type...
The NIO1 (Negative Ion Optimization 1) experiment hosts a flexible RF $\text{H}^-$ ion source, developed by Consorzio RFX and INFN-LNL to improve the present concepts for the production and acceleration of negative ions. The source is also used to benchmark the instrumentation dedicated to the ITER neutral beam test facility.
Many diagnostics are installed in NIO1 to characterize the source...
The ion beams extracted from the LIS, ECRIS or EBIS are characterized by complicated charge state distribution of the ions. As a rule, for the aims of the specific experiment only one of the charge states is needed, so the charge state separation is a part of the beam formation. To predict the behavior of intense ion bunch with various distributions of the charge states in magnetic field of...
Carbon plasma source has been developed. The application of the carbon source is carbon material deposition. Hydrocarbon gas and hydrogen gas are generally used for the carbon material deposition. In this case, main plasma component is hydrogen and hydrocarbon. Carbon is not main component of the plasma. The carbon plasma source can provide carbon gas. In my device, carbon can be the main...
A program to develop 200 kW, 1 MHz solid state high frequency power supply is initiated in a phased manner with industry. High frequency power supply is intended for plasma formation in neutral beam source or similar applications, providing high efficiency. The present high frequency power supply is configured with multiple modules of Class-D H-Bridge inverters, magnetic combiners, tuning and...
Negative ion sources are the first stage of several types of accelerators, ranging from medical applications to materials testing and to heating systems for nuclear fusion devices. One of the most important aspects of the sources is the amount of extracted ion current, which depends on the extraction voltage and on the availability of ions inside the source plasma; this situation is described...
A new proton therapy facility with 230 MeV SC cyclotron is being built by China Institute of Atomic Energy(CIAE). An internal cold-cathode ion source is designed and tested, which will be mounted in the SC cyclotron central region. It consists of a chimney, an upper and a lower cathode fixed by the chimney. The design considerations and some testing works are presented. The magnetic field in...
We have developed a beam dump that can withstand beam energy below 20 MeV. The beam dump consists of copper, graphite and is designed to prevent primary heavy ion beam and secondary radiation particles such as neutrons, electrons, x-rays, etc., from beam generated when the beam collides with the beam dump blocks. Now a beam dump is attached to the end of diagnostic chamber of accelerators....
Jinping Underground laboratory for nuclear astrophysics (JUNA) will take advantage of the ultralow background of the deep underground, using a high intensity accelerator facility and highly sensitive detector to measure directly tiny reaction rates which in laboratories at the Earth's surface are hampered by the cosmic-ray background into detectors. The design of a 400 kV, 10 mA accelerator...
In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negative ion beam of 350 A/m$^{2}$ for 3600 s plasma duration and 100 s...
1 MV electrostatic accelerator is being developed in the KOrea Multipurpose Accelerator Complex (KOMAC), and has specifications of the 1 MV of maximum accelerating voltage and more than 1 mA of beam current to meet the needs from the users with a MeV range ion beam implantation. The accelerator consists of ion source, accelerating tube, beam transport system, switching magnets and target...
In order to spread neutron use in industrial field, it is important to provide a compact semi-ready-made neutron source that a company and a factory can easily introduce. Therefore we have studied a compact accelerator-driven neutron source system, which consists of a 2.45 GHz simple-mirror electron cyclotron resonance (ECR) proton source, a four-vane RFQ linac and a lithium target for...
Shallow carbon implantation by low energy carbon cluster ions can be an effective method to reduce heavy metal contamination of Si wafer for semiconductor industry. An ion source utilizing high voltage hollow cathode discharge is designed and being tested in order to examine the capability to generate carbon cluster ions. A 35.5 mm inner diameter, 40 mm long glass made ion source has a...
For industrial application, cyclotrons have been available for radioactive ion beam (RI) production and hadron cancer therapy. Industrial fields welcome the compact machine and furthermore require high current output. Downsizing cyclotrons are achieved with high magnetic field generated by superconducting coils but in case of proton, high magnetic field makes it difficult to extract an...
Bucket ion sources for neutral beam injectors [1] have been applied to industrial applications such as ion beam milling processes [2] for fabrication of micro-structures of hard disk drives, semiconductor devices, piezoelectric devices etc. Large area ion beams (maximum diameter of 580 mm) by the sources could enable high-throughput commercial processes in factories [3]. However, lifetime of...
The ion microbeams ranging from several hundred keV to several MeV have, so far, been formed by a large microbeam system with the total length of about 30 m that comprises an accelerator, a beam transport line and focusing lenses.The installation of the microbeam system in a common experimental room with a typical size of about 4 × 4 × 4m$^{3}$ is difficult. A MeV compact ion microbeam system...
A microwave ion source is a long-life ion source because of few expendable items. Therefore, it is useful for various applications in industrial and medical fields such as ion implantations of semiconductors and particle therapies. We have previously reported on development of a microwave ion source for ion implantations. The magnetic field of the microwave ion source is generated by...
Performance of ECRIS SMASHI (Superconducting Multi-application Source of Highly-charged Ions) has been steadily improved since 2015. As one approach of the improvement we investigated the ion beam transport in the LEBT (Low Energy Beam Transport) beamline. In the last commissioning experiment we found that the extracted beam loss is quite high (>50 %) in the LEBT, especially in the inlet of...
We describe the development of an ion beam irradiation system with focused beams of highly charged ions (HCI), whereby the use of HCI of noble gas creates unique features leading to applications which can complement the existing equipment market. The developed, built and commissioned facility consists of an electron beam ion source (EBIS), a downstream Wien filter for the ion mass and charge...
ECR-based ion source provide a continuous beam formation without maintenance, which is important for applications, for example, in industry and medicine.
The paper presents an ECR source under development with an intense beam of hydrogen ions with energy up to 8 keV and a current of up to 4 A, formed by a multi-aperture four-electrode ion-optical system. The hydrogen plasma is created by an...
In a broad beam ion source for industrial applications such as sputter deposition, ions produced by DC or RF electrical gas discharge, are accelerated into many beamlets by means of an electrostatic extraction system. The accelerating stage is composed of two multi aperture grids (screen grid and extraction grid). The confluence of individual beamlets results in the formation of an ion beam...
Effective transportation of negative hydrogen ions formed during charge exchange of a high-brightness proton beam with ballistic focusing in a hydrogen charge-exchange target was observed in experiment. A beam of protons with an energy of 10 keV, a current of 4.7 A, an emission current density of 470 mA/cm$^{2}$, an angular divergence of 10 mrad, and a focal length of 200 cm was formed at 1 Hz...
Zeolites have been heavily utilized for different industrial applications that include catalysis, ion exchangers, and adsorbents. Due to the stability and rigidity of the zeolite framework, it has been investigated recently as a template to hold nanoparticles in its matrix [1]. This would allow the framework to immobilize nanoparticles without the need for a polymeric stabilizer that prevents...
A high current microwave ion source (MWS) has been developed by Phoenix Nuclear Labs (PNL) to cater the high beam current requirement for various applications in semiconductor, solar and power device fields. The source consists of solenoid electromagnets surrounding a microwave resonant cavity producing a magnetic field tuned to match the electron cyclotron resonance (ECR) of 2.45 GHz...
Ion beam based processes to prepare semiconductor components open possibilities to further down size electronic appliances in future. Aluminum-nitride (AlN) has potential applications in many fields of electronics such as ultra-violet light-emitting diodes and highly thermal conductivity dielectric materials. Direct implantation of AlN molecular ions into base materials may realize a new...
Silicon carbide (SiC) crystal, which has good mechanical and electric properties, is a promising materials. Owing to its ultrahigh-hardness and chemical stability, it is difficult to fabricate structures in micro-nano meter scale by means of conventional fabrication processes. Ion beam technology, which has been successfully applied in industrial fields such as semiconductor devices, is a...
Plasma cathodes can be used as electron sources in electric propulsion applications. Unlike hollow cathodes where a low work function insert material that needs to be heated to elevated temperature is utilized for the electron emission, plasma cathodes do not need to be preheated, and could be switched on instantaneously. Recently, at Bogazici University Space Technologies Laboratory...
Boron ion beams are widely used for technologies. Firstly, it is boron doping of semiconductors, and secondly it is ion beam modification of the surface. Boron compounds have a high hardness, so such modification can significantly increase the life time of tools and machine parts. The boron rich ion beams were generated by vacuum arc ion source with two boron-containing cathodes. These are...
The paper reviews recent results of further developments and applications with several options generating pure boron plasmas for ion beam formation and surface modifications. The following methods of generation of boron plasma were used:
$\bullet$ igniting and keeping alive cathode spots in vacuum arc with pure boron cathode;
$\bullet$ self-sputtering mode of planar magnetron discharge with...
There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected to enable : 1) carbon-ion production for medical use, 2) various ions with a charge-to-mass ratio of 1/3 for the existing linac injector, and 3) low cost for...
Linac4 H$^-$ ion source is required to deliver 50 mA of H$^-$ ions within a transverse rms emittance of 0.25π mm∙mrad[1, 2]. In order to meet these requirements, it is indispensable to clarify the H$^-$ ion extraction and beam formation process in the vicinity of the beam extraction hole i.e. extraction region in the H$^-$ ion source. In the previous works, the extraction region in the Linac4...
The Neutralized Drift Compression eXperiment (NDCX-II) at Lawrence Berkeley National Laboratory is an induction accelerator designed to deliver intense nano-second pulses of ions, up to several tens of nC/pulse, with kinetic energy up to 1.2 MeV [1]. A filament-driven multicusp plasma ion source [2] is used to generate pulsed helium ion beams. Both filament and arc power supplies are pulsed to...
The instrumented calorimeter STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) has been designed with the main purpose of characterizing the SPIDER negative ion beam in terms of beam uniformity and divergence during short pulse operations. STRIKE is made of 16 1D Carbon Fibre Composite (CFC) tiles, intercepting the whole beam and observed on the rear side by infrared (IR)...
Magnetic confinement of plasma is of importance for improving the ionization efficiency particularly for hot cathode discharge plasma [1]. In this contribution, we present an investigation on the effects of varying multicusp configuration of annular SmCo magnets on plasma confinement for hot cathode plasma and its consequences on ion beam generation. Hot cathode plasma was subjected to a...
Graphene Oxide is an insulator consisting of oxygenated functional groups, so that, for restoring its electrical conductivity, chemical or heat treatments can be employed. Presently, a selective deoxygenation of graphene oxide has been conducted for design and fabrication of graphene based devices. The Ion beam lithography is considered a powerful route for patterning onto graphene oxide foil....
The installation and testing of the commissioning 14.5 GHz ECR ion source ARTEMIS at the Facility for Rare Isotope Beams (FRIB) was completed in the fall of 2016. The ion source is providing beam to the FRIB Front End and will be used throughout the commissioning of the linac accelerator. The paper reviews the first commissioning result and beam measurements with Argon and Krypton beams...
A strong spontaneous-focusing of low energy ion beam (~150 eV) having the high current density (~3 mA/cm$^{2}$) was observed using three sets of concave electrodes with nominal focal length of 350 mm [1-5], where the ion and electron current density profiles were measured by Faraday cups in an ion beam propagation chamber, to which the ion beam is injected from the ion source [6]. To study the...
In the framework of the LHC Injector Upgrade program, a new normal conducting linac (Linac4) operating at the frequency of 352 MHz has been recently commissioned to the final energy of 160 MeV. Linac4 will be connected to the LHC injector chain in 2020 and it is expected to provide a 40 mA, 400 µsec H$^-$ beam for charge-exchange injection into the Proton Synchrotron Booster.
The Linac4...
At the Inter University Accelerator Centre, Delhi, the High Current Injector Programme mainly consisting of an 18 GHz High Temperature Superconducting ECR Ion Source on a 100 keV high voltage platform followed by radiofrequency quadrupole and drift tube linear accelerators will serve as an alternate injector to the existing Superconducting Linear accelerator. Studies related to the...
The external beam line for the Twin Electron Beam Ion Source (EBIS) is intended for transmission of highly charged ions extracted from EBIS for consequent injection into a high-frequency RFQ, and for general diagnostics of ion beams being extracted from or injected into the EBIS. For medical or industrial applications it can be mostly light ions with charge to mass ratio of 0.5 – 0.4. The...
An ion source was designed utilizing a planar magnetron with 2-inch diameter pure boron target. The discharge can operate both in DC and pulsed mode. Boron as a semiconductor has low conductivity at a room temperature, which still is sufficient to start low-current (2 mA) high-voltage (2000 V) DC discharge. Due to the target heat insulation, it gradually rises the temperature to 300 ºC and...
The proton source and LEBT will be delivered to ESS in November 2017 by INFN-LNS. In order to prepare for the commissioning of this system at ESS, understanding the beam dynamics of the beam extraction and transport at low energy is important. The ion source and LEBT were commissioned at INFN-LNS in 2016-17 with measurements of the beam current, fractions of different ion species (H$^{+}$,...
The set-up of the CERN-MEDICIS facility for production of novel radioisotopes for biomedical applications is in the process of completion. The Radiochemical Laboratory for the extraction of samples of medical radionuclides and the dedicated Mass Separator Bunker have been built, the radiation protection is prepared, and the associated infrastructure is reaching an advanced stage [1]. For the...
The paper reports a novel method of increasing the fraction of H ion produced by vacuum arc ion sources with metal hydride cathodes, which applies the ionic selectivity of inclined-aperture extraction grid to separate and filter heavy metal ions. Since H ion and Ti ion produced by vacuum arc discharge have great differences in kinetic energy and mass-to-charge ratio, H ions are easy to pass...
Since the 90s the ion beam irradiation experiments are under development at the heavy ion RFQ HIP-1 (Heavy ion Prototype) in the Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre «Kurchatov Institute»; ("Kurchatov institute" - ITEP). The linac provides accelerated beams of $\text{Cu}^2+$, $\text{Fe}^2+$ ions with current up to 6 mA and...
The RF negative ion source NIO1 (Negative Ion Optimization 1) [1], built at Consorzio RFX in Padova (Italy), aims at investigating basic issues of ion source physics while providing a tool to benchmark and validate beam simulation codes. Due to its small size and its modular design, NIO1 represents a valuable testbed for DEMO relevant solutions, such as energy recovery and alternative systems...
In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production a new home-made Time of Flight Mass Spectrometer (ToF-MS) has been built in the off-line laser laboratory.
Thanks to this instrument it is possible to test resonant laser ionization processes of stable species, to evaluate their ionization efficiency and...
In J-PARC, peak H$^-$ current of several tens mA is produced from a cesiated hydrogen plasma ignited by a solid-state rf amplifier with the frequency of 2 MHz [1-3]. In case of the high-intensity H$^-$ beam extracted from the ion source, the plasma density in the source chamber is so high that the ion sheath around the beam extraction area follows the rf oscillation. The reason is that the ion...
Ion extraction from DECRIS-PM (Dubna Electron Cyclotron Resonance Ion Source with Permanent Magnets) source is simulated by using initial distributions of ions at the extraction aperture obtained with NAM-ECRIS (Numerical Advanced Model of ECRIS) code.Three-dimensional calculations of plasma emissive surface are done and ions are traced in the extraction region. The ion beam profiles show...
Recently, we reported the fullerene modification using neutral-neutral or neutral-ion collision reactions in the two-chamber configuration of the Bio-Nano electron cyclotron resonance ion source (ECRIS) [1]. In our methodology, modified fullerenes can be synthesised in vapor-phase in an ECR plasma, or on a surface of a plasma chamber, and can be characterised by on-line mass spectrometric...
At GSI a high current test injector (HOSTI) is in operation since 2009. It has been designed for the experimental investigation of high brilliance low charge states ion beams and for the injection optimization of high current ion beams into the existing and future LINAC.
The ion beam from HOSTI is extracted with a three-electrode system and post-accelerated to match the longitudinal input...
For the ESS project, an Emittance Measurement Unit (EMU) was developed by CEA Saclay. This EMU, based on Allison scanner design, was installed in a LEBT for the ion source commissioning at INFN-LNS at the beginning of the year 2017. Transverse emittance is one of the key measurements to be performed during the commissioning of the low energy sections of a hadron linac.The good knowledge of the...
Injector beam test facility at Rare Isotope Science Project (RISP) was prepared to test ion beam acceleration before installation of the accelerating instruments at accelerator tunnel. The facility consists of an electron cyclotron resonance ion source (ECRIS), a low energy beam transport (LEBT), a radio-frequency quadrupole (RFQ), and a medium energy beam transport (MEBT). The initial tests...
Endohedral fullerene is expected to be utilized for such applications as quantum computing or magnetic resonance imaging contrast agent, because it has various material characters [1]. It is confirmed that multiply charged fullerene ion beam has been produced in electron cyclotron resonance ion source (ECRIS) at Osaka Univ. [2]. However, it can’t be simply identified because spectrum of...
A new tandem type source on the basis of electron cyclotron resonance (ECR) plasma has been constructed for producing synthesized ion beams in Osaka University [1]. Both stage plasmas can be individually operated, and produce ions in which the energy is controlled by a large bore extractor and can also be transported from the first to the second stage. We have already investigated the basic...
We have been developing on proton beam generation with a Laser ion Source (LIS). A LIS has its uniqueness in providing various species of ion beams only by changing solid material target which is irradiated by high intensity pulsed laser. The methods to provide heavy ion beams such as Au or Fe solid target were already established, but there has been no attempt to produce proton beam with LIS....
The space charge compensation process is important in order to transport ion beams with high perveance from the source to the RFQ. In particular, not fully compensated beams may develop halo and emittance growth at the entrance of the RFQ. The signal of incomplete compensation is the presence of a significant residual potential (in the range of 5% or 10% of the uncompensated potential). In...
The use of electrode for ion implantation was realized for plasma treatment to achieve dose uniformity and increased ion implantation energy by affecting the trajectory and energy of the ion beam [1]. The effect of the electrode addition was seen from the ion implantation of insulating materials as well as producing low-energy ion beams for material synthesis and surface modification [2]. ...
A new type of laser ion source was developed to produce low charge state positive, negative, and cluster ions by constricting a plasma in a narrow cylindrical volume formed by the target ion material. The basic operation of the ion source involves the ablation of a spot within a cylindrical hollow target by a Q-switched laser. The focused laser strikes the inside surface of the target at a...
A 100 keV, negative hydrogen ion based neutral beam system is at the developmental stage in INTF at Institute for Plasma Research (IPR), India. This test facility is used for characterising the large beam source which is to be used in the Diagnostic Neutral Beam (DNB) for ITER. A large number of diagnostics are also at the developmental stage for measuring and monitoring the beam performance....
In the present work, the study of the discharge characteristics of the Penning plasma source (PS) by analyzing the energy and mass-charge spectra of ions emitted by PS in the longitudinal direction is presented. Characteristic anode dimensions of the PS are 15 mm x Ø12 mm and the magnetic induction magnitude is 80 mT. It was shown that there were sharp ‘jumps’ in the discharge current (up 300...
A 100 MeV high intensity proton cyclotron, CYCIAE-100, has been built at China Institute of Atomic Energy (CIAE) as a driving accelerator for the Beijing Radioactive Ion-Beam Facility (BRIF). The proton beam of 25 uA/100 MeV has been used at the primary test in 2014. Now the proton beam of 1000uA/1MeV has been obtained. This paper will depict the injection beam line, including the $\text{H}^-$...
The SC200 compact superconducting cyclotron is supposed to contribute on the proton therapy under the collaboration of the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and the Joint Institute for Nuclear Research (JINR). The energy of cyclotron is 200Mev with the maximum proton beam current of ~400nA from the cyclotron outlet. The hot cathode Penning Ionization Gauge (PIG)...
For overcoming limitation of convectional particle therapy, the development of Accelerator-based Boron Neutron Capture Therapy (A-BNCT) is in progress by Dawonsys Co. Ltd. Dawonsys developed a duoplasmatron ion source for A-BNCT and KBSI (Korea Basic Science Institute) is developing an Electron Cyclotron Resonance Ion Source (ECRIS) as alternative candidate of duoplasmatron. The proton ion...
VIBA (Versatile Ion Beam Accelerator) is a compact linear accelerator facility using 28 GHz ECR ion source at KBSI (Korea Basic Science Institute). The goal of VIBA is to support various researchers using low-energy ion beams. During the year, diagnosis system of VIBA was changed for ion implantation. Ion implantation chamber was separated from the conventional diagnostic chamber for improving...
The commissioning and first results of the ion source to test the Extremely Low Energy Antiproton Ring ELENA are presented. ELENA is a compact ring for cooling and further deceleration of 5.3 MeV antiprotons delivered by CERN Antiproton Decelerator (AD) down to 100 keV. Because of the long AD cycle of 100 s, one ion source for protons and H$^{-}$ with a kinetic energy of 100 keV has been...
The LECR4 ion source (Lanzhou ECR ion source No.4) has been successfully put into service at IMP since February 2014. It includes the evaporative cooling magnets to provide the injection and an extraction magnet field. It is the first time for evaporative cooling technology used in ECR ion source in the world. According to the running of LECR4 in the following 4 years, the evaporative cooling...
The Korea Basic Science (KBSI) is developing a Gas Cluster Ion Source (GCIS) for X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectroscopy (SIMS) since 2014. The experimental system was installed for generation of argon gas cluster ion beam using GCIS which consists of cluster generator, ionizer, Wien filter, accelerator, micro lens and target. For analysis of gas cluster ion...
SC200 is an isochronous cyclotron which generate 200 MeV, 500 nA proton for particle therapy. As an important component of the cyclotron, the ion source chimney needs to be tested and optimized. The simulation results and optimization of ion source in test-bed for SC200 are described in this paper. The simulation results show that the extraction slit with different sizes and shapes has an...
We have constructed tandem-type electron cyclotron resonance ion source (ECRIS) which consists of two individual ion sources [1]. We aim at synthesizing endohedral metallofullerenes by transporting metal ion beam from the first stage into the fullerene plasma in the second stage. Since the fullerene is dissociated in the second stage by use of conventional microwave source, low power microwave...
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beams to reduce the radius of the electron beam with goal to either match the circulating ion beam (electron lenses and electron coolers) or to increase...
Microscopy has spurred development in many fields and has been an integral part of scientific development for more than hundred years. Any form of microscopy is limited by the wavelength of the probe used. Microscopy using fast protons with a wavelength of ~10s fm has several advantages over traditional forms of microscopy. A MeV proton mainly interacts with substrate electrons. Due to the...
The Leuven Isotope Separator Online (LISOL) facility, at the Cyclotron Research Center (CRC), Louvain-la-Neuve, was operated as a gas-cell-based laser ion source to produce rare ion beams by the In-Gas Laser Ionization and Spectroscopy (IGLIS) technique [1]. After almost two decades of operation high-purity radioactive ion beams of more than 15 different elements were obtained exploiting...
Invited Talk
The electron-beam ion trap (EBIT) charge breeder of the ReA post-accelerator at the National Superconducting Cyclotron Laboratory (Michigan State University) started on-line operation in September 2015. During the past years, the EBIT charge bred many pilot beams of stable isotopes (e.g., $^{39}$K, $^{85}$Rb) and several rare-isotope beams (e.g., $^{46}$Ar, $^{46}$K, $^{34}$Ar, $^{47}$K,...
The difference in material that covers the plasma electrode surface can affect the production and destruction processes of negative hydrogen ions (H$^-$). Tantalum adsorption on the plasma electrode is believed to reduce negative ion destruction by capturing hydrogen atoms, and the same effect is expected for caesium adsorption.
In this experiment, tantalum and tungsten filaments produce a...
In the first phase of the ISOL@MYRRHA project at SCK•CEN a 100 MeV proton beam will be used to produce radioactive ion beams (RIB) through the isotope separation on-line (ISOL) technique. A first conceptual design of the facility together with its target module was realized with special attention towards a quick and reliable target exchange. This target module integrates the target and ion...
In its first stage, ISOL@MYRRHA will have access to a 100-MeV CW proton beam up to 4 mA. Even if the license of the ISOL target station will limit the maximal applicable intensity, we are still considering a primary beam that allows for unprecedented-high in-target production rates. In order to fully benefit from these intensities an efficient ion beam production process is required. A key...