The RPC system covers the barrel region of the ATLAS muon spectrometer in the
pseudo-rapidity range of |eta|<1.05 with six independent detector layers, and
solely provides the L1 trigger signal and the track coordinate in the
non-bending plane of the muon candidates.
The system has been designed to operate up to the nominal LHC luminosity
(1e34cm-2s-1) which has been already exceeded thanks...
The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness...
The ALICE Time Of Flight (TOF) detector is based on Multigap RPC. The TOF covers the ALICE central barrel by means of an array of 1638 MRPC strips for more than 150000 readout channels, for a total active area of $140~m^2$. Thanks to its excellent time resolution and efficiency, the TOF provides a fundamental contribution regarding the Particle IDentification (PID) in p-p, p-Pb and Pb-Pb...
The muon telescopes of the Extreme Energy Events (EEE) Project are made of three Multigap Resistive Plate Chambers (MRPC). The EEE array is composed, so far, of 53 telescopes and is organized in clusters and single telescope stations distributed all over the Italian territory. They are installed in High Schools with the aim to join research and teaching activities, by involving researchers and...
The CMS muon system is operating in the conditions of increasing instantaneous luminosity. During run2 the energy of the collisions in the center of mass is 13 TeV. This leads naturally to very high level of the radiation from different sources – collision and beam induced background and activation of the materials, as well. Particles that scatter around in the cavern and are reflected back to...
The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider.
Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel").
The RPCs, placed in the barrel region of the ATLAS detector, are arranged in three...
In the quest for particle dark matter and physics beyond the Standard Model, the possibility of the existence of neutral long-lived particles (LLPs) has been proposed. The MATHUSLA project has been designed to detect possible LLPs produced in LHC collisions with a surface detector built by exploiting existing technologies. The detector will be installed above one of the high-luminosity...
SHiP (Search for Hidden Particles) is a new experiment proposal designed to search for particles foreseen in many extensions of the Standard Model and to study neutrino physics. The experiment plans to use the high-intensity SPS proton beam at CERN, dumping in five years 2 x 10^20 protons on a heavy target. A hadron absorber and a muon sweeper are located downstream of the target to reduce...
The Extreme Energy Events experiment is the largest system in the world implemented completely with Multigap Resistive Plate Chambers (MRPC). Presently, it consists of a network of 57 muon telescopes, each made of 3 MRPC, located at high schools in Italy, devoted to the study of secondary cosmic rays. The stations, sometimes hundreds of kilometers apart, are synchronized at a few nanoseconds...
Several theoretical models inspired by the idea of supersymmetry (SUSY) accommodate the possibility of HSCPs (Heavy Stable Charged Particles). The phase-II upgrade of the CMS-RPC system will allow the trigger and identification of this kind of particles exploiting the Time of Flight Technique with the improved time resolution that a new DAQ system will provide (~2ns). Moreover, new RPC...
The Compressed Baryonic Matter (CBM) experiment aims at exploring the QCD phase diagram at large baryon densities in the beam energy range from 2 A GeV to 11 (35) A GeV at the SIS100 (SIS300) accelerator of FAIR/GSI. For charged particle identification that is required by many observables that are sensitive to the phase structure like collective flow, phase space population of rare hyperons,...
Large area arrays composed of dispersed stations are of major importance in experiments where Extensive Air Shower (EAS) sampling is necessary. Among those dispersed stations it is mandatory to have detectors that require very low maintenance and show good resilience to environmental conditions. In 2012 our group started to work on RPCs that could become acceptable candidates to operate within...
Resistive Plate Chambers are used in the ATLAS experiment and provide the muon trigger and two coordinate measurements in the barrel region |n|<1.05
In preparation for the coming years of LHC running at higher luminosity, besides the New Small Wheel project which is expected to complement the ATLAS Muon spectrometer in the end-cap regions, a smaller size project, known as BIS78, is being...
The architecture of the present RPC trigger system in the ATLAS muon barrel was designed according to a reference luminosity of 1034 cm-2 s-1 with a safety factor of 5, with respect to the simulated background rates corresponding to about 300 fb-1 integrated luminosity. HL-LHC will reach a 7.5 times higher luminosity, and correspondingly higher rate, an expected integrated luminosity of 5000...
Multi-gap Resistive Plate Chamber(MRPC) is a widely used timing detector of which the typical time resolution is about 50ps. This makes MRPC an optimal choice for triggering in many large physics experiments such as STAR and CBM. The prior work of improving the time resolution of MRPC has focused on altering the structure of the detector. However, the algorithm of reconstructing a more precise...
The Compressed Baryonic Matter spectrometer(CBM) is expected to be operational in the year 2024 at the Facility for Anti-proton and Ion Research(FAIR) in Darmstadt, Germany.CBM aims to study strongly interacting matter under extreme conditions.The key tool providing hadron identification at incident energies between 2 and 10AgeV is a Time-of-Flight(TOF) wall covering the polar angular range...
A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the exteranl target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision....
To increase the potential of fast withdrawal of RPC condition data and to eliminate the necessity of constantly decreasing manpower to run various tools, a new RPC data automation utility is being developed. Its goal is to rearrange the RPC detector currents, originally stored asynchronously in the CMS_RPC_PVSS_COND schema on cms_omds_lb database, into a new synchronous format in the...
We measured the efficiency of CMS RPC detectors in pp collisions at 13TeV using the tag and probe method. A muon from Z boson decay is selected as a probe of efficiency measurement, reconstructed using the CMS inner tracker and the rest of CMS muon systems. The overall efficiency of CMS RPC chambers during the 2016-2017 collision runs are measured to be 96% for a group of high-efficiency chambers.
CMS RPC Integrated Charge is a current related data analysis which provides one of the most significant physical parameters crucial for monitoroing the detector ageing quantities. Using the new format of storing RPC detector currents in the CMS_RPC_COND detabase schema on cms_omds_lb provides a boost in the fast calculation of the current integrated in time for every single HV channel. The...
We have tested the performance of a long MRPC(Multigap Resistive Plates Chamber) with a new type of readout of the signal induced by the minimum ionizing particles. The detector consists of 2 stacks of 6 gas gaps of 220 microns. The signal pick-up electrodes are 16 strips 8mm wide and 180cm long. One ends of the half of the 16 strips are connected to the ends of the other half using 8 LEMO...
The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the material of the detector could cause significant damage and could result in progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study difficult...
An early test shows serious “crosstalk” in the strips of the RPC detector for ATLAS Phase II. The unexpected signals on non-main strips increase the invalid counts and system load. To find the orgin of the “crosstalk”, we decide to simulate the RPC detector and change relate parameters to eliminate the “crosstalk”.
CST (Computer Simulation Technology) is a powerful simulation platform for all...
With the upgrade of the RPCs and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk.
Through Electromagnetic Simulation, performed with CST Studio Suite, new panels design are tested and their crosstalk property are studied.
The behavior of different type of panel...
The RPC detector system consists of a total of 1056 double-gap chambers, installed both in the barrel and endcap regions. Thus covering the pseudo-rapidity region up to |η| ≤ 1.9, the system contributes to all muon track finders. Establishing the correct HV working points is of primary importance in order to ensure a stable performance reaching optimal efficiency and in the same time to keep...
Abstract: The Compressed Baryonic Matter spectrometer(CBM) is expected to be operational in the year 2024 at the Facility for Anti-proton and Ion Research(FAIR) in Darmstadt, Germany. CBM aims to study strongly interacting matter under extreme conditions. The key element providing hadron identification at incident energies between 2 and 10AGeV (30 AGeV) at SIS100 (SIS300) is a Time-of-Flight...
The Resistive Plate Chambers (RPC’s) will be extended to the high pseudo-rapidity region, a challenging region for muon reconstruction in terms of background and momentum resolution, of the CMS muon system where only the Cathode Strip Chambers (CSC) are present. During the last years, several studies on the performance of new technologies and configurations have been done using Monte-Carlo...
The muon trigger of the ALICE experiment is currently yielded by 72 Bakelite single-gap Resistive Plate Chambers operated in maxi-avalanche mode (low threshold value, without amplification in the FE electronics), arranged in four 5.5x6.5 m2 detection planes. In order to meet the requirements posed by the forthcoming LHC high luminosity runs from 2020 onwards, in which ALICE will be read out in...
A new type of RPC chamber prototype, consisting of a triplet of 50x100 cm^2 RPCs, having 1 mm gas gap, 1.2 mm electrodes and new high sensitivity front end electronics, has been designed for the HL-LHC ATLAS upgrade program. Beam test of this prototype chamber was performed in GIF++ using 100 GeV muons and a 14 TBq 137Cs gamma source to simulate the HL-LHC environment. The amplified analog...
In the future Phase-2 LHC runs, LHC instantaneous luminosity will reach a maximum value of 7×10^34 cm^-2 s^-1 and the CMS muon system will be extended up to η (pseudo rapidity) region of 2.4 where the expected maximum particle rate is 600 Hz cm^-2. In view of the expected background conditions, we have studied high-sensitive thin phenolics double-gap RPC models to improve the rate capability...
In the next decades, the Large Hadron Collider (HL-LHC) will run at very high luminosity (5*10^34 cm^-2 s^-1). During this period the CMS RPC system will be subjected to high background conditions which could affect the performance inducing aging effects. A dedicated consolidation program is ongoing which must certify the present CMS RPC system for the HL-LHC running period. At the CERN Gamma...
Present RPC gas mixtures are all based on the H2C2F4 molecule (tetrafluoro ethane, commercially known as Suva 134a) as the main component. This is characterized by a GWP=1400, which makes it potentially dangerous for the atmosphere. We study here new mixtures based on the H2C3F4 molecule (tetrafluoro propene, commercially known as HFO) which is expected to substitute the tetra-fluorine-ethane...
The Multi-gap Resistive Plate Chambers(MRPC) are used as a timing device in several collider experiments and a cosmic ray experiment. The MRPC is a gaseous detector and operates essentially with a mixture of gases. The gas mixture of MRPC at current experiments is based on the greenhouse gases (GHG) such as freon of Hydro-Fluoro-Carbon (HFC) group. The studies to reduce the amount of emission...
Content:
The Iron Calorimeter (ICAL) at the India-based Neutrino Observatory (INO) is designed to study various aspects of the neutrino oscillation, in particular, the neutrino mass hierarchy using the matter effects independent of CP phase [1,2]. The magnetized calorimeter will be populated with an alternate array of iron plates and Resistive Plate Chambers (RPCs) for tracking the muons...
Resistive Plate Chambers (RPCs), used for the Muon Spectrometer of the ALICE experiment at CERN-LHC, are currently operated in maxi-avalanche mode with a low threshold value and without amplification in the front-end electronics. The gas mixture is made up of $C_{2}H_{2}F_{4}$, $SF_{6}$ and $iC_{4}H_{10}$. Since the first two gases have high global warming potentials (GWP), they will probably...
The India-based Neutrino Observatory (INO) is a mega science project aimed at building a large underground laboratory to study the atmospheric neutrinos. INO will host a 50 kton magnetized iron calorimeter detector (ICAL) in which Resistive Plate Chambers (RPCs) will be the active detector elements. In ICAL, 28,800 glass RPCs of 2 m $\times$ 2 m size will be operated in the avalanche mode. The...
The Extreme Energy Events Observatory is an extended muon telescope array, covering more than 10 degrees in latitude and longitude. The 53 muon telescopes are equipped with tracking detectors based on MRPCs technology with time resolution better than 200 ps. The current MRPCs are six gas gaps detectors, 300 micron each. The chambers are filled with a mixture of 98% of tetrafluoroethane and 2%...
The work presented here is an update of the presentation given in the previous RPC workshop, aimed at finding an eco-friendly gas mixture for streamer operation of RPCs. Indeed the streamer working regime is still suitable for building large RPC systems dedicated to low rate applications, such as cosmic ray and neutrino physics.
As a completion of the gas mixture already considered, the...
Resistive Plate Chamber (RPC) detectors are widely used thanks to their excellent time resolution and low production cost. The large RPC systems at the CERN-LHC experiments are operated in avalanche mode thanks to a Freon-based gas mixture containing C2H2F4 (R134a), SF6 and iC4H10. The first two gas will be phased out from production in the near future due to their high global warming...
The RPC performance dependence on several factors like the flow rate, quality of the gas mixture, environment etc. Some simulation studies (CDF) for flow distribution of gas inside the RPC is done which show that, there are some “dead zones”, where the gas does not reach some pockets inside the RPC. The nozzle positions dependence is also observed in the simulation studies. The flow resistors...
Resistive Plate Chamber (RPC) detectors are widely employed in the muon trigger systems of three experiments at the CERN Large Hadron Collider (LHC) thanks to their excellent time resolution. The LHC RPC systems are operated under gas recirculation to reduce operation cost and greenhouse gas emissions since their gas mixture is based on C2H2F4, which has a high global warning potential....
All types of RPC are operating in very strong and homogeneous electric fields from 50 to 160 kV/cm and gas mixtures at atmospheric pressure. The width of the gas gaps vary between 140 µm and 2 mm. Especially crucial is the selection of gas mixtures to prevent permanent gas discharges and aging of the electrodes.
For a deeper understanding of the gas discharge under RPC conditions a high...
Resistive Plate Chambers are the gaseous detectors and uses gas as their active medium for the detection of charge particles. Glass based resistive plate chambers of size 2m X 2m, operated in avalanche mode will be used as an active detector element at INO-ICAL experiment. In order to fulfill the physics goal, about 29,000 RPCs will be used for 20 long years. The quality and purity of the gas...
The Multi-gap Resistive Plate Chambers (MRPCs) provide excellent timing as well as position resolutions at relatively lower cost. Therefore, they can be used in medical imaging applications such as PET where precise timing is a crucial parameter of measurement. We have designed and fabricated several six-gap glass MRPCs and extensively studied their performance. In this paper, we describe the...
Multi-gap resistive plate chamber are studied for range verification in particle therapy. Four- and six-gap glass RPCs were constructed with 0.45- and 1.1-mm-thick floating glass and tested with 662-keV gamma rays emitted from a 5-GBq Cs-137 source and high-energy photons induced by 44-MeV proton beams provided by the MC50 cyclotron at the Korea Institute of Radiological Accelerator Medical...
The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Multi-gap Resistive Plate Chamber (MRPC) is adopted to construct the Time of Flight (ToF) Wall and a system time resolution of 80ps is necessary for hadron identification. MRPC3b as defined in the CBM ToF TDR has been designed...
The Multi-gap Resistive Plate Chamber (MRPC) is an advanced form of
Resistive Plate Chamber (RPC) detector where the gas gap is divided into
sub-gaps. MRPCs are known for their good time resolution and detection
efficiency for charged particles. The MRPCs that are being used nowadays are developed with glass electrodes. We have made an attempt to develop a 6-gap MRPC using bakelite electrodes....
In this work we report on the construction and performance (efficiency) of a multi-gap resistive plate chamber (MRPC) consisting of a stack of 6 parallel thin glass plates (thickness of 400 $\mu$m). We followed the construction procedure of the chambers which were designed for the ALICE Time-Of-Flight detector [1]. Spacers (fishing line) between the resistive plates define a series of gas gaps...
We discuss the possibility of hosting a big Astrophysics ground-based experiment in Ecuador, aimed to detect VHE particles. Ecuador location makes possible to see both the Northern and Southern sky. An additional geographic feature is the presence of one of the highest American mountains, the Chimborazo (6310 masl), that happen to be the highest point on Earth measured from the center of the...
The upgrade of the Resistive Plate Chamber (RPC) detector, in order to increase the detector rate capability and to be able to work efficiently in high rate environment, consists in the reduction of the operating voltage along with the detection of signals which are few hundred µV small. The approach chosen by this project to achieve this objective is to develop a new kind of Front-End...
With the new RPC’s generation, it is possible to work with induced signals of hundreds $\mu V$, hence the front-end electronics is an important and delicate part of the detector order to get a detectable signal. The electronic chain is made up of an amplifier, a discriminator, a TDC. The new front-end is realized by the use of silicon-germanium (SiGe) components, provided by IHP...
ZDAQ is a light data acquisition system, based on
ZeroMQ and mongoose-cpp networking frameworks. Providing binary data collection, events building, web accessible finite state machine and process control, it is well suit to manage distribute data source of laboratory or beam test. It provides a simple event building (one unique process, no parallel building) with flexible data writing...
With the increase of the LHC luminosity foreseen in the coming years many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced. The new ones should be capable to provide time information to reduce the data ambiguity due to the expected high pileup.
We propose to equip CMS high eta muon chambers with doublets of RPC detectors read...
With the increase of the LHC luminosity foreseen in the coming years many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced. The new ones should be capable not only to support the high particle rate but also to provide time information to reduce the data ambiguity due to the
expected high pileup.
RPC using low-resistivity...
The status of the art in realizing and upgrading the RPC performance is presented as an optimal combination of the detector and the front-end electronics features.
We show here a combined analysis of the different parameters characterizing the detector and the FE electronics, in order to obtain the best performance in terms of space and time resolution as well as of rate capability, in...
Large area silicon pixel detectors have been traditionally used in high-energy physics experiments for particle tracking, with a time resolution typically ranging from few to some tens of ns.
Presently, the silicon pixel community is targeting sub-ns time measurements.
A first direction is the development of Low-Gain Avalache diodes, with a time resolution down to 30ps for large pixels....
High energy cosmic ray muons are a suitable source for imaging larger and denser materials due to their high penetration power and considerably large life time (~2.2 μs). We plan to build an imaging setup for material identification utilizing the Coulomb scattering of cosmic ray muons due to their interaction with the materials and tracking their trajectories with RPCs. To begin with, we...
Point of colsest Approche algorithm (PoCA) based on the formalism of muon radiography using the Multiple Coulomb scattering (MCS) as information source is previously used to obtain the reconstruction images of high Z materials. The low accuracy of reconstruction image is caused by two factors: the flux of natural muon and the assumption of single scattering in PoCA algorithm. In this paper,...
In recent years, the cosmic-ray muon imaging technique has been widely used in industrial practical application, such as the nuclear reactor monitoring and the container internal scanning. However, it is restricted by the lagging imaging algorithm technology, resulting in poor image quality and time-consuming. In our study, a cosmic-ray imaging system of Gas Electron Multiplier (GEM) has been...
The proposed ICAL detector [1] at India-based Neutrino Observatory will use Resistive Plate Chambers (RPC) [2], stacked in 150 layers with iron plates sandwiched between them, as the tracking device for the muons created by the atmospheric neutrinos through their charged current interaction with the iron nuclei. Fast and efficient measurement from each RPC layer is an important factor for this...
The experiments at the Large Hadron Collider (LHC) operate in a large radiation background. With the increase of the luminosity of the LHC, estimates of the signal rate caused by neutral radiation should be assessed in order to infer the signal rate per unit area due to radiation.
A Geant4 simulation has been developed to estimate the sensitivity to gamma and neutrons of a double-layer RPC,...
Time of flight system (TOF) based on MRPC technology is widely used in modern physics experiments, and it also plays an important role in particle identification. With the increase of accelerator energy and luminosity, TOF system is required to indentify definite particles precisely under high rate environment. The MRPC technology TOF system can be defined as three generation. The first...
The Compact Muon Solenoid (CMS) is one of the two general purpose detectors built at the Large Hadron Collider (LHC).In view of the High Luminosity LHC phase, the CMS detector requires upgrades to preserve the efficiency, resolution, and background rejection of the detector. To overcome the limited particle rate capabilities of the present RPC, a new electrode material, the low resistive...
The muon tomography system built with the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. In 2013 we have developed a prototype of muon tomography system named TUMUTY, and we now try to use more large sensitive scale position resolution MRPC to upgrade the system. The sensitive area is more than 1m2 and it has 864...
Abstract: In the near future, the CBM (Compressed Baryonic Matter) experiment constructed at FAIR (Facility for Anti-proton and Ion Research) at GSI, Darmstadt, Germany, will provide unique research opportunities to explore the phase diagram of nuclear matter. As one of the core detectors in the CBM experiment, the Time-of-Flight (TOF) system applies MRPC (Multi-gap Resistive Plate Chamber)...
A radiation hard detector with sub-nanosecond time resolution capable of working in high rate environment (order of MHz/cm 2 ) is under development.
Some gaseous detector prototypes made using planar Semi-conductive electrodes are being studied.
The prototypes have the same structure as an RPC detector but employ SI-GaAs electrodes with resistivity up to 10^8 Ω∙cm.
In this presentation some...
The India based Neutrino Observatory (INO) experiment is an approved mega science project to build a huge magnetized Iron Calorimeter (ICAL) detector with largest (~ 30,000) number of Resistive Plate Chamber (RPC) detectors. Cavern of this ICAL will be under the mountain having overburden of ~1.5 km. The ICAL primary motive is to understand the atmospheric neutrinos and related parameters....
For precise start time determination a Beam Fragmentation T0 Counter is under development for the Time-of-Flight Wall of the Compressed Baryonic Matter Spectrometer [1]. This detector will be located around the beam pipe, covering the front area of the Projectile Spectator Detector. The fluxes at this region are expected to exceed 10^5 cm-2s-1.
Ceramic RPCs [2] could be use because of their...
Recently LIP has introduced a new type of position sensitive thermal neutron detector (PSND) based on the combination of thin-gap RPCs (Resistive Plate Chambers) and solid-state neutron converters containing Boron-10. This detection technology offers a much lower cost per unit area compared to He-3 based detectors. The potential of this emergent detector technology is currently being evaluated...
We propose a unconventional calorimetry approach. The method is based on an idea that has been used for the first time in the energy determination of extensive air showers (EAS) at very high energy (> 100 TeV). It has some peculiar characteristics which that can be summarized in the following two points: a) measurement of the shower energy by means of a single sampling; b) measurement of the...
In this work we report the procedure of the design, manufacture and assembly of a Multigap Resistive Plate Chamber at the detectors lab of ICN-UNAM. This detector consists of a stack of 5 parallel thin resistive plates (glass). The array is placed inside a hermetic box which is filled with a gas mixture of 5% SF6 and 95% freon. The main objective of this project is to reproduce technology...
By 2027, the Large Hadron Collider luminosity should increase from 1.5 × 1034 cm−2 s −1 to 5 × 1034 cm−2 s −1. For this purpose two more long shutdown (LS) periods are scheduled to give the machine and the experiments the necessary time to anticipate these luminosity increases: Long Shutdown 2 (LS2) in 2018/2019 and Long Shutdown 3 (LS3) in 2023/2025. During these long shutdown periods the CMS...
For the Phase-2 upgrade of the CMS Muon System at high pseudorapidity η, at CERN the large size trapezoidal improve resistive plate chamber (iRPC) prototype with 1.4 mm double-gas gap was developed to test new electronics. The new long trapezoidal PCB (with length of 1645 mm) consisting of 88 stripes with 10 mm wide and thickness of dielectric layer around 550 µm has been installed in this...
Multi-Gap Resistive Plate Chambers (MRPC) are gas detectors specially used as time of flight (TOF) detector for their excellent time resolution. Mostly, glass based MRPCs have been developed all over the world. To explore parallel possibilities, we have made an effort to build a six-gap MRPC using bakelite electrodes. The MRPC has dimension 15 cm x 15 cm x 1.0 cm. Each gas-gap thickness is...
This is only a Test to verify email delivery by indico.cern
(We experience some issues that indico.cern was not notifying authors onces accepted their contribution)