Conveners
Saturday PM: Future Accelerators
- Tord Johan Carl Ekelof (Uppsala University (SE))
Saturday PM: Contributed talks
- Henning Kirschenmann (Helsinki Institute of Physics (FI))
The present landscape and the open questions in particle physics will be briefly reviewed, showing that they call for new means of investigation both towards higher energy and towards more sensitivity to small couplings.
CERN is preparing actively, according to the recommendation of the 2013 European Strategy, for an ambitious post-LHC accelerator complex. The 100km circumference Future...
Particle colliders are quickly reaching a saturation in terms of cost and size: if not with the LHC, then probably with the next generation of colliders. How can we break through this wall and bring accelerators into the next century? The new and blossoming field of Advanced Accelerator Concepts is coming up with novel, exciting technologies aimed at making particle accelerators more compact...
The ATLAS Experiment is currently working on a series of upgrades in preparation for the High-Luminosity LHC, which is scheduled to start in 2026. One such upgrade will be to the inner tracking system. The current Inner Detector will be completely replaced with a brand new, all-silicon Inner Tracker consisting of a pixel detector near to the beam line and a large-area strip tracking detector....
In order to be ready for the HL-LHC, the entire tracking system of the ATLAS experiment will be replaced by a new silicon detector called Inner Tracker (ITK). The new pixel system is currently being developed and could include around 14 m2 of silicon. Here we present the
status of the ongoing development of 3D silicon pixel sensors as well as the work on the very first demonstrator.
The HL-LHC will produce around 200 pp interactions in each bunch crossing, and maintaining the reconstruction performance in this harsh environment is one of the most important experimental challenges to overcome for a successful ATLAS physics program. At the same time, big investments are done to equip the forward region up to |eta| < 4 with tracking capabilities with the ITk. The...
When designing and selecting future collider projects, it is important to understand the physics potential of the different alternatives. Here, we investigate the naturalness reach of the International Linear Collider (ILC) in simple constrained supersymmetric models, and compare it to the reach of the High-Luminosity Large Hadron Collider (HL-LHC), based on the results in [1]. The reach is...
A proposed future circular e+e- collider, the FCC-ee, is suggested to search for sterile neutrinos. The Neutrino Minimal Standard Model, vMSM, is a model of sterile neutrinos, that accommodates explanations for several phenomena of physics beyond the Standard Model. This thesis presents an overview of the theoretical motivation for vMSM, an outline of the experimental conditions at the FCC-ee,...