Conveners
Session 5
- Paul Seyfert (CERN)
- Rudiger Haake (CERN)
In this presentation we will detail the evolution of the DeepJet python environment. Initially envisaged to support the development of the namesake jet flavour tagger in CMS, DeepJet has grown to encompass multiple purposes within the collaboration. The presentation will describe the major features the environment sports: simple out-of-memory training with a multi-treaded approach to maximally...
The analysis of top-quark pair associated Higgs boson production enables a direct measurement of the top-Higgs Yukawa coupling. In ttH (H→bb) analyses, multiple event categories are commonly used in order to simultaneously constrain signal and background contributions during a fit to data. A typical approach is to categorize events according to both their jet and b-tag multiplicities. The...
High energy collider experiments produce several petabytes of data every year. Given the magnitude and complexity of the raw data, machine learning algorithms provide the best available platform to transform and analyse these data to obtain valuable insights to understand Standard Model and Beyond Standard Model theories. These collider experiments produce both quark and gluon initiated...
Vidyo contribution
Based on the natural tree-like structure of jet sequential clustering, the recursive neural networks (RecNNs) embed jet clustering history recursively as in natural language processing. We explore the performance of RecNN in quark/gluon discrimination. The results show that RecNNs work better than the baseline BDT by a few percent in gluon rejection at the working point of...
Leveraging on our previous work on developing DNN-based classification models for Higss events [1], we turn to CNN-based classification models for muon events. Using Intel Knights Landing (KNL) processors, we present performance metrics on training convolutional neural networks (CNNs) on multiple KNL computing nodes for the task of muon identification (i.e "high Pt" or "low Pt"). This work is...