Speaker
Description
We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle.