Jul 4 – 11, 2018
COEX, SEOUL
Asia/Seoul timezone

PERSPECTIVE STUDY OF CHRMONIUM, EXOTICS AND BARYONS WITH CHARM AND STRANGENESS

Jul 6, 2018, 6:30 PM
2h
COEX, SEOUL

COEX, SEOUL

Poster Posters POSTER

Speaker

Mikhail Barabanov (JINR)

Description

The spectroscopy of charmonium-like states together with the spectroscopy of charmed and strange baryons is discussed. It is a good testing tool for the theories of strong interactions, including: QCD in both the perturbative and non-perturbative regimes, LQCD, potential mod-els and phenomenological models [1, 2, 3]. An understanding of the baryon spectrum is one of the primary goals of non-perturbative QCD. In the nucleon sector, where most of the exper-imental information is available, the agreement with quark model predictions is astonishingly small, and the situation is even worse in the strange and charmed baryon sector. The experi-ments with antiproton-proton annihilation are well suited for a comprehensive spectroscopy program, in particular, the spectroscopy of charmonuim-like states and flavour baryons. Charmed and strange baryons can be abundantly produced, and their properties can be studied in detail. For this purpose an elaborated analysis of charmonium and exotics spec-trum together with spectrum of charmed and strange baryons is given. The recent experimental data from different collaborations are analyzed. A special attention was given to the recently discovered XYZ-particles. The attempts of their possible interpretation are considered. The results of physics simulation are obtained. Some of these states can be interpreted as higher-lying charmonium and tetraquarks with a hidden charm. It has been shown that charge/neutral tetraquarks must have their neutral/charged partners with mass values which differ by few MeV. This hypothesis coincides with that proposed by Maiani and Polosa. Heavy baryons with charm and strangeness are expected to exist. But much more data on different decay modes are needed before firmer conclusions can be made. These data can be derived from the experiments using a high quality antiproton beam with momentum up to 15 GeV/c.

Primary author

Presentation materials

There are no materials yet.