Description
Convener: D. Senor (PNNL)
In order to predict the irradiation effects in the MQXF quadrupoles in view of HL-LHC at CERN during operation up to a luminosity of 4'000 fb-1, an irradiation program was carried out on industrial, Ta and Ti added Nb3Sn wires. Wire samples from the same batch were irradiated with high energy protons (65 MeV and 24 GeV, up to 1.4 × 1021 p/m2) and neutrons (1 MeV, up...
Understanding and predicting the effects of irradiation on complex alloys such as structural “ferritic” steels used in fission and fusion reactors is a tremendous and complex challenge. Irradiations performed in experimental irradiation facilities always deviate to some extend from the irradiation conditions existing in nuclear reactors. For instance, the neutron spectrum can be different but...
STIP irradiation experiments have been conducted in the targets of SINQ (the Swiss Spallation Neutron Source) since 1996, which been the unique irradiation experiment in spallation target irradiation environments in the world. Seven irradiation experiments were performed during 1996 and 2014 and more than 8000 specimens from several tens kinds of materials were irradiated to doses as high as...
Advanced micromechanical testing techniques of irradiated materials and the ability to predict the bulk mechanical properties from small scale experiments
BLIP’s energetic proton beams can be used to explore the effects of radiation on
novel materials under consideration for next generation nuclear reactors and high-power particle accelerators. By studying how proton irradiation affects materials (including different grades of beryllium and graphite, carbon fibers
and silicon-carbon fiber composites, and super alloys and steels), and assessing...