Speaker
Description
Among the iron-based Superconductors (IBS) the 11 and the 122 family have attracted much attention because they show excellent superconducting properties for high field applications. The 11 family is also very robust against proton induced damage, and this is important in view of applications of superconductors in radiation-harsh environments such as particle accelerators. Moreover, conductors of these two phases produced as Powder In Tube (PIT) wires or Coated Conductors (CC) have reached a transport Jc that exceeds the practical level of 105 A/cm2 at 4.2 K and 10 T but the route to the realization of conductors in a scalable way is still long though.
In this work we explore the possibility to produce 11 coated conductors and 122 ex-situ PIT wires in a simple and scalable way. On one side we are working at the development of prototype IBS CC through the deposition of thin films of the phase Fe(Se,Te) via PLD on different metallic templates with and without buffer layers. In parallel, starting from home-made (Ba,K)Fe2As2 powders produced at SPIN, we produced short samples of ex-situ PIT wires and tapes at ambient pressure.
Acknowledgments
We acknowledge funding from CERN for this collaboration activity within the FCC Study (addendum FCC-GOV-CC-0086).